DYNAMIC STREAM TEMPERATURE MODEL FOR UNSTEADY FLOW

Final report to
National Oceanic and Atmospheric Administration National Weather Service
Office of Hydrology
Silver Spring
Maryland

David S. Bowles
Larry E. Comer
William J. Grenney

PRWG156
Utah Water Research Laboratory
College of Engineering
Utah State University
Logan, Utah 84322

DYNAMIC STREAM TEMPER ATURE MODEL FOR UNSTEADY FLOW

Final report to

> National Oceanic and Atmospheric Administration
> National Weather Service
> Office of Hydrology
> Silver Spring Maryland

David S. fowles
Larry E. Comer
William J. Grenney

ATMOSPHERIC SCIENCES LIBRARY

PRWG156
Utah Water Research Laboratory College of Engineering Utah State University Logan, Utah 84322

A CKNOWLEDGMENTS

The development of the Dynamic Stream Temperature Model (DSTEMP) and its application to the Brazos-Little Rivers, Texas, were accomplished under contract to the Hydrologic Research Laboratory, National Weather Service, National Oceanic and Atmospheric Administration. Field investigations leading to the development of a mathematical submodel for heat transfer processes in the bed of a small stream were carried out under the same contract and are described in a separate report. Special thanks are extended to Dr. Danny L. Fread, who supervised the work for NOAA, and provided guidance throughout the contract period, especially with the adaptation and calibration of the Implicit Dynamic Routing Program (DNRT).

Gratitude is also expressed to those individuals and organizations who provided data for the Brazos-Little application of DNRT-DSTEMP. Particular mention is made of the following: R. J. Pickering, Chief, Quality of Water Branch, USGS, Reston, Virginia; Leon S. Hughes, Chief, Quality of Water Unit, USGS, Austin, Texas; John F. Griffiths, Texas State Climatologist, College Station, Texas; and the National Climatic Center, Asheville, North Carolina. In addition, thanks are estended to Carl Relyea, Hydrologic in Charge, Ohio River Forecast Center, NOAA, Cincinnati, Ohio, who provided data for application of DNRT-DSTEMP to the Ohio River. Although it was not practical to
apply DNRT-DSTEMP to the Ohio during the contract period it is hoped that a future application may make use of the excellent data made available by Mr. Relyea and his colleagues.

TABLE OF CONTENTS

Page
A CKNOWLEDGMENTS ii
LIST OF FIGURES vi
LIST OF TABLES vii
ABSTRACT
Chapter

1. INTRODUCTION 1
2. REVIEW OF LITERATURE 3
Stream temperature models 3
Meteorologic considerations 25
3. DYNAMIC STREAM TEMPERATURE MODEL DESCRIPTION 29
Introduction 29
Program Capabilities 30
Implicit Dynamic Routing Program (DNRT) 34
Model Formulation 35
Numerical Solution 46
Implicit four-point finite difference scheme 46
Numerical solution of advection equations 48
Point loads 54
Heat Exchange Components 55
General 55
Solar radiation 58
Vegetative radiation 77

TABLE OF CONTENTS (Continued)

Chapter Page
Atmospheric radiation 78
Back radiation 80
Latent heat of vaporization associated with evaporation 81
Conduction 82
Latent heat of fusion associated with snowfall 83
Surface layer renewal 84
Solar radiation absorbed by streambed 84
Back radiation from streambed 85
Conductive flux across streambed 85
4. APPLICATION OF DSTEMP TO BRAZOS-IITTLE RIVERS, TEXAS 88
Introduction 88
Brazos-Little River System 89
Data Sources 91
Streamflow Modeling 91
DSTEMP Problem Set-Up 92
Results 95
5. CONCLUSIONS AND FURTHER WORK 100
DNRT 101
DSTEMP 101
REFERENCES 103
APPENDIX A 108

1. Overall flow chart 109
2. Input data and decision parameter description 110
3. Program listing 133
4. Examples of input and output
a. Main stream only 143
b. Main stream and one tributary 146

LIST OF FIGURES

Figure Page
3.1. Relationship between computation time intervals and meteorologic time intervals for the case where $\mathrm{IMDT}=8$ and $\mathrm{DT}(\mathrm{JJ})=3$, $\mathrm{JJ}=\mathrm{J},(\mathrm{J}+8)$. 32
3.2. Sub-reach control volume 36
3.3. Network of points on (x, t) plane for the generalized implicit four-point finite difference method (adapted from Amein and Fang, 1970) 47
3.4. Parabolic distribution of observed daily solar radiation flux by technique 2 (adapted from Albertson et al., 1974) 68
3.5. Sensitivity of incident solar radiation to reflectivity of ground adjacent to stream (R_{g}) 73
3.6. Sensitivity of incident solar radiation to total dust depletion coefficient (d_{p}) 74
3.7. Comparison of solar radiation calculated by the three techniques 76
3.8. Atmospheric radiation factor, β (after Raphael, 1962) 79
3. 9. Dissipation of incident solar radiation flux 86
4.1. Schematic of Brazos-Little River System 90
4.2. Partial listing of DSTEMP model input for the Brazos-Little River System (December 5-28, 1972) 93
4.3. Hydrographs and thermographs at upstream and downstream boundaries of Brazos-Little River System including model predictions (December 5-28, 1972) 96
4.4. Assumed late ral inflow thermograph 98

LIST OF TABLES

Table Page
2.1. Summary of stream water temperature models (notation explained on following pages) 5
3.1. Definition of dummy variables used in DSTEMP and in Equations 3.25 through 3.29 52
3.2. Total dust depletion coefficient, d_{p} 65
3.3. Albedo of ground surface, Rg_{g} 67

ABSTRACT

Current interest in stream temperature prediction stems largely from concern for the possible deleterious environmental consequences of thermally polluted surface waters. Stream temperature is an important determinant of the solubility of dissolved gases, biological reaction kinetics, the distribution of fish and lower forms of aquatic life, and the efficiency of water treatment for domestic and industrial use. This report describes the Dynamic Stream Temperature Model (DSTEMP). The model is suitable for prediction of stream temperatures over a diurnal cycle or over extended periods of time. DSTEMP may be used for unsteady flow conditions by linkage with a dynamic streamflow routing model (DNRT). Alternatively steady flow conditions may be specified. Data requirements are realistic in terms of data types usually collected by the National Weather Service, NOAA, and the United States Geological Survey. A users manual for DSTEMP is included in Appendix A. In addition to describing the model an application of DSTEMP to the Brazos-Little Rivers, Texas, is included. The combined DNRT-DSTEMP models provide a powerful tool for streamflowstream temperature forecasting in a wide variety of streams and river systems.

CHAPTER 1

INTRODUCTION

Temperature is perhaps the single most important parameter in stream water quality. Human activity generally raises natural streamwater temperatures due to impoundments, industrial uses, irrigation, and modifications of topographic features. As a result, higher temperatures reduce the solubility of dissolved oxygen, increase metabolism, respiration, and oxygen demand of aquatic life, intensify many types of toxicity, and promote "less desirable" fish species and aquatic organisms (McKee and Wolf, 1963).

Numerous mathematical models of the mechanisms of heat transfer in streams are now available. In contrast to most of the previous models, the stream temperature model described in this report is dynamic and can be used in conjunction with a dynamic streamflow model. The Dynamic Stream Temperature Model (DSTEMP) may be used for prediction of stream temperatures over a diurnal cycle or over extended periods of time. DSTEMP can be applied to small streams in which streambed heat exchange is important, or it can be applied to large river systems with first order tributaries, thermal discharges, and meteorologic conditions that vary spatially over the river basin. Data requirements are realistic in terms of data types usually collected by the National Weather Service, NOAA, and the United States Geological

Survey. A complete description of DSTEMP, its capabilities, and formulation is contained in Chapter 3. Appendix A includes a description and examples of the input requirements of DSTEMP.

In Chapter 4 an application of DSTEMP to the Brazos-Little River System, Texas, is presented. A 12 hour computational time interval is used for the simulation of a storm of 23 days duration. As part of the same research project DSTEMP was used to represent the diurnal variation of stream temperatures on a small mountain stream, Spawn Creek, Utah. Full details of this application are contained in Comer et al. (1975). An example of the DSTEMP input and output for the Spawn Creek study is contained in Appendix A. Another hypothetical example of a main river and tributary system is also included in Appendix A.

Chapter 3 contains a literature review of previous stream temperature models. Conclusions and suggestions for further work are presented in Chapter 5.

CHAPTER 2

REVIEW OF LITERATURE

Stream temperature models

The basis of most water quality modeling is the one-dimensional conservation of mass equation. This partial differential equation includes transport processes of advection and dispersion, and additional source-sink terms. A common form of the one-dimensional conservation equation is:

$$
\begin{aligned}
& \frac{\delta(\mathrm{AC})}{\delta t}+\frac{\delta(\mathrm{AUC})}{\delta x}=\frac{\delta}{\delta x} \mathrm{AE}_{\mathrm{L}} \frac{\delta \mathrm{C}}{\delta x}+\mathrm{S}_{\substack{ \\
\text { (a) }}}^{\text {(b) }} \begin{array}{l}
\text { (c) }
\end{array} \quad \text { (d) }
\end{aligned}
$$

in which
$\mathrm{A}=$ Cross-sectional area of channel
$\mathrm{E}_{\mathrm{L}}=$ Longitudinal dispersion coefficient
$U=$ Mean stream velocity at cross-section
$\mathrm{x}=$ Coordinate in downstream direction
$\mathrm{t}=$ Time
and where term (a) is rate of mass change, term (b) is advection, term (c) is dispersion, and (d) is a source-sink term(s) which is usually the distinguishing term among various simulation equations.

C represents the concentration of constituents and with regard to temperature modeling, can be replaced by T, water temperature.

Several assumptions are made with the use of the advection dispersion equation, one of which is one-dimensionality. Onedimensional simulations assume complete and total mixing so that temperature is uniform at any given cross-section. In a turbulent stream, total mixing is considered a reasonable assumption. The source-sink term for temperature is typically based on the thermal energy conservation or heat balance approach. Much of the thrust of past temperature modeling has been directed toward refinement or simplification of the thermal energy budget.

Further assumptions and simplifications are often made in model development to facilitate ease of use and solution, and to minimize the complexity of input data required. Additional variations are sometimes made to fit local situations or specific meteorologic conditions.

Summaries of several existing stream temperature models are presented in Table 2.1 with accompanying discussion focusing on the uniqueness of each model. The tabular format of the summary associates similarities in model components and reduces the erratic and conflicting notation found in literature into a common set of terms.

Table 2.1. Summary of stream water temperature models (notation explained on following pages).

Harper (1972)

General Equation	$\frac{\partial T}{\partial t}+\mathrm{U} \frac{\partial T}{\partial \mathrm{x}}=\frac{\partial^{2} \mathrm{~T}}{\partial \mathrm{x}^{2}}+\frac{\phi_{T}}{\mathrm{C}_{\mathrm{p}} \mathrm{Yh}}$
Energy Budget (Heat Balance)	$\phi_{\mathrm{T}}=\phi_{\mathrm{R}}-\left(\phi_{\mathrm{B}}+\phi_{\mathrm{E}}+\phi_{\mathrm{H}}\right)$
Solar Radiation, ϕ_{R}	$\phi_{\mathrm{R}}=\mathrm{f}(\alpha, \mathrm{L}, \mathrm{C}) \quad$ (Raphae1, 1962) or Direct
Observation	

Dailey and Harleman (1972)
General Equation

$$
\begin{aligned}
\frac{\partial}{\partial t}(A T)+\frac{\partial}{\partial x}(Q T) & =\frac{\partial}{\partial x}\left(A E_{L} \frac{\partial}{\partial x} T\right) \\
& -K_{T} A \Delta T_{E}+S
\end{aligned}
$$

Nonuniform cross-sections, steady flow
Harleman et al. (1973)
General Equation

$$
\begin{aligned}
& \frac{\partial}{\partial t}(A T)+\frac{\partial}{\partial x}(Q T)=\frac{\partial}{\partial x}\left(\mathrm{AE}_{L} \frac{\partial T}{\partial x}\right)+\frac{b \phi_{T}}{\rho C} \\
& +\frac{\text { WHD }+ \text { THD }}{\rho C_{p}} \\
& \phi_{\mathrm{T}}=\phi_{\mathrm{RI}}-\phi_{\mathrm{RR}}+\phi_{\mathrm{a}}-\phi_{\mathrm{ar}}-\phi_{\mathrm{E}}-\phi_{\mathrm{H}} \\
& \phi_{T}=\phi_{R}\left\{4 \times 10^{8}\left(T_{s}+460^{4}\right)+f(U)\left\{\left(e_{s}-e_{a}\right)\right\}\right. \\
& \left.\left.+0.255\left(\mathrm{~T}_{\mathrm{s}}-\mathrm{T}_{\mathrm{a}}\right)\right\}\right\}
\end{aligned}
$$

Energy Budget
(Heat Balance)

Table 2.1. Continued.

Harleman et al. (1973) Continued.

Energy Budget (Heat Balance) (Continued)	$\phi_{T} \simeq-K\left(T_{S}-T_{E}\right)$
Solar Radiation, ϕ_{R}	$\phi_{\mathrm{R}}=\phi_{\mathrm{RI}}-\phi_{\mathrm{RR}} \quad$ (Same as Harper, 1973)
Evaporation, $\phi_{\text {E }}$	$\phi_{E}=f(U)\left(e_{S}-e_{a}\right)$
Back Radiation, ϕ_{B}	$\phi_{\mathrm{B}}=\phi_{\mathrm{bs}}-\phi_{\mathrm{a}}+\phi_{\mathrm{ar}}$ WHERE
	$\phi_{\mathrm{a}}=1.2 \times 10^{-13}(\mathrm{~T} a+460)^{6}\left(1+\mathrm{kc}^{2}\right)$
	$\phi_{\mathrm{ar}}=0.03 \phi_{\mathrm{a}}, \phi_{\mathrm{bs}}=4.0 \times 10^{-8}(\mathrm{~T} \mathrm{~s}+460)^{4}$
Conduction, ϕ_{H}	$\phi_{H}=R \phi_{E} \quad$ WHERE $\quad R=0.255\left\|\frac{T_{s}-T_{a}}{e_{s}-e_{a}}\right\|$
```Streambed Heat Transfer,```	Neglected due to generally low thermal conductivity of earth and limited temperature gradients
Other Terms	Heat Discharges-- $\frac{\text { WHD }+ \text { THD }}{\rho C}$
	Nonuniform cross-sections, unsteady flow

Novotny and Krenkel
(1971)

General Equation
$\frac{\partial T}{\partial t}+U \frac{\partial T}{\partial x}=E_{L} \frac{\partial^{2} T}{\partial X^{2}}+\frac{K_{a}}{h C_{p} \rho}\left(\Delta T_{E}\right)$
Energy Budget
(Heat Balance)
$\phi_{\mathrm{T}}=\phi_{\mathrm{RI}}-\phi_{\mathrm{RR}}-\phi_{\mathrm{a}}-\phi_{\mathrm{ar}}-\phi_{\mathrm{bs}}-\phi_{\mathrm{E}}-\phi_{\mathrm{H}}-\phi_{\mathrm{W}}$

Streambed Heat Transfer, ${ }^{\phi}{ }_{S B}$

Assumes all thermal input at the air water interface

Other Terms

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=11.42+\mathrm{h}_{\mathrm{v}}\left(0.0166 \mathrm{e}^{.0625 T_{\mathrm{a}}}+\rho_{\mathrm{a}} \mathrm{C}_{\mathrm{pa}}\right) \\
& \text { WHERE } \mathrm{h}_{\mathrm{v}}=392 \mathrm{x}^{-0.1} \mathrm{U}_{\mathrm{s}} \\
& \text { Uniform cross-sections, steady flow, surface } \\
& \text { temperature differs from bulk }
\end{aligned}
$$

Table 2.1. Continued.

## Pailey et al.

(1974)

General Equation
$\frac{\partial T}{\partial t}+U \frac{\partial T}{\partial x}=E_{L} \frac{\partial^{2} T}{\partial x^{2}}+\frac{f(T)}{h \rho C_{p}}$
Energy Budget
(Heat Balance)
$\phi_{\mathrm{T}}=\phi_{\mathrm{R}}-\left(\phi_{\mathrm{B}}+\phi_{\mathrm{E}}+\phi_{\mathrm{H}}+\phi_{\mathrm{S}}\right)$
$\phi_{T}=-\left(\varepsilon^{\prime} \Gamma+\eta\right)$

Solar Radiation, $\phi_{R}$
$\phi_{\mathrm{R}}=\phi_{\mathrm{RI}}-\phi_{\mathrm{RR}} \quad$ WHERE
$\phi_{R I}=\phi_{C L}\{.35+0.61(10-C)\}$
$\phi_{R R}=0.108 \phi_{\mathrm{RI}}-6.766 / 10^{-5} \phi_{\mathrm{RI}}{ }^{2}$
Evaporation, $\phi_{E} \quad \phi_{E}=\frac{\phi_{H}}{R} \quad$ WHERE $\quad R=6.1 \times 10^{-4} \rho\left(\frac{T_{W}-T_{a}}{e_{S}-e_{a}}\right)$
Back Radiation, $\phi_{\mathrm{B}} \quad \phi_{\mathrm{B}}=\phi_{\mathrm{bs}}-\phi_{\mathrm{a}}+\phi_{\mathrm{ar}} \quad$ WHERE $\phi_{\mathrm{bs}}=.97 \mathrm{TT}_{\mathrm{w}}^{4}$
$\phi_{a}=\left(a+b e_{a}\right) \phi T_{a}^{4}, \phi_{a r}=0.03 \phi_{a}$

Conduction, $\phi_{H}$
$\phi_{H}=\left\{8+0.35\left(\mathrm{~T}_{\mathrm{W}}-\mathrm{T}_{\mathrm{a}}\right)+3.9 \mathrm{U}_{\mathrm{a}}\right\}\left(\mathrm{T}_{\mathrm{w}}-\mathrm{T}_{\mathrm{a}}\right)$

Streambed Heat Transfer,
Not mentioned
$\phi_{\mathrm{SB}}$
$\phi_{s m}=7.85 v^{2.375}\left\{L+C_{i}\left(T_{w}-T_{a}\right)\right\}$
Complete mixing, uniform cross-sections, steady flow

Brown (1965)
General Equation
$\Delta T_{P R}=\frac{A_{S} \times \phi_{T}}{Q}$

Energy Budget
(Heat Balance)
$\phi_{\mathrm{T}}=\phi_{\mathrm{NR}}{ }^{ \pm \phi_{\mathrm{E}}}{ }^{ \pm \phi_{\mathrm{C}}}{ }^{ \pm} \phi_{\mathrm{H}} \pm \phi_{\mathrm{A}}$

Solar Radiation, $\phi_{R} \quad$ Net Radiation: $\phi_{N R}=\phi_{R}-\phi_{B}$ (Measured directly)

Evaporation, $\phi_{E}$
$\phi_{E}=K_{E} L U_{a}\left(e_{S}-e_{a}\right)$
Back Radiation, $\phi_{B}$
Accounted for in $\phi_{N R}$

Table 2.1. Continued.

Brown (1965)

Conduction, $\phi_{\mathrm{H}}$
Streambed Heat Transfer, ${ }^{\phi}{ }_{\text {SB }}$
$\phi_{\mathrm{H}}=0.0002 \mathrm{UP}\left(\mathrm{T}-\mathrm{T}_{\mathrm{a}}\right)$
$\phi_{S B}=K_{S B}(\mathrm{dT} / \mathrm{dz}) \quad$ Up to $25 \% \phi_{\mathrm{N} R}$ absorbed

Steady flow, no tributary sources, no groundwater

Brown (1972)

$$
\begin{array}{ll}
\text { General Equation } & \Delta T_{P R}=\frac{A_{S} x \phi_{N R}}{Q}(0.000267) \\
\begin{array}{c}
\text { Energy Budget } \\
(\text { Heat Balance })
\end{array} & \phi_{\mathrm{T}} \approx \phi_{\mathrm{NR}}
\end{array}
$$

Solar Radiation, $\phi_{R} \quad \phi_{N R}$ Measured directly or obtained graphically
Streambed Heat Transfer, $\phi_{S B}$

About $20 \% \phi_{\mathrm{NR}}$ transferred to streambed (bedrock)

Other Terms
Non-flowing water not included in $A_{s}$
Assumptions
Steady flow, no tributaries, no groundwater $\phi_{\mathrm{NR}} \approx 0.95 \phi_{\mathrm{T}}$

Morse (1972a)
General Equation
$\frac{\partial T}{\partial t}+U \frac{\partial T}{\partial x}=\frac{\phi_{T}}{C_{p} p h}$
Energy Budget
(Heat Balance)
$\phi_{T}=A^{\prime \prime} T^{2}+B^{\prime \prime} T+C^{\prime \prime}$
$A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$ from month1y averaged meterologic data

Streambed Heat Transfer, Neglected $\phi_{S B}$

Other Terms
$\phi_{T}$ found as a function of statistical constants $A^{\prime \prime}, B^{\prime \prime}$, and $C^{\prime \prime}$.

Dispersion neglected, variable cross-sections, meteorological records "typical"

Table 2.1. Continucd.

## QUAL-1 (Texas Water <br> Development Board)

 (1971)General Equation
$A \frac{\partial T}{\partial t}=\frac{\partial\left(A E_{L} \frac{\partial T}{\partial x}\right)}{\partial x}-\frac{\partial(A U T)}{\partial x} \pm \frac{A \phi_{T}}{\gamma C_{p} h}$
Energy Budget
$\phi_{\mathrm{T}}=\phi_{\mathrm{R}}+\phi_{\mathrm{a}}=\left(\phi_{\mathrm{B}} \pm \phi_{\mathrm{H}}+\phi_{\mathrm{E}}\right)$
(Heat Balance)
Solar Radiation, $\phi_{R}$
$\phi_{R}=\phi_{R I} a_{t}(1-R)\left(1-0.65 c^{2}\right)$
Evaporation, $\phi_{E}$
$\phi_{E}=\gamma L(a+b U)\left(e_{S}-e_{a}\right)$
Back Radiation, $\phi_{B}$
Conduction, $\phi_{\mathrm{H}}$
$\phi_{\mathrm{B}}=\sigma\left(\mathrm{T}_{\mathrm{S}}+460\right)^{4}$
$\phi_{C}=\phi_{E}(0.01 \mathrm{R})$ WHERE $\quad R=\frac{p}{29.92} \frac{\left(T_{S}-T_{a}\right)}{\left(e_{S}-e_{a}\right)}$

Streambed Heat Transfer, ${ }^{\phi}{ }_{S B}$

Other Terms
Considered groundwater heat input but conduction relatively insignificant compared to $\phi_{T}$

$$
\begin{aligned}
\phi_{\mathrm{a}}= & \left(2.89 \times 10^{-6}\right) \quad \sigma\left(\mathrm{T}_{\mathrm{a}}+460\right)^{6}\left(1+0.17 \mathrm{C}^{2}\right) \\
& (1-.03)
\end{aligned}
$$

Complete mixing, variable cross-section, variable dispersion coefficient

Bowles et al. (DSTEMP)
Genera1 Equation

$$
\begin{aligned}
& \frac{\partial}{\partial t}(\mathrm{AT})+\frac{\partial}{\partial \mathrm{x}}(\mathrm{QT})=\frac{\phi_{\mathrm{TS}} \mathrm{~W}}{\rho c_{\mathrm{p}}}+\frac{\phi_{\mathrm{SB}} \mathrm{~W}}{\rho c_{p}}+Q_{\ell}{ }^{\mathrm{T}} \ell \\
& +q_{g}{ }^{T} g^{W}+q_{r} r^{T} r^{w}-e^{T} w_{w} \\
& \phi_{\mathrm{TS}}=\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{~T} \\
& \phi_{S B}=C_{3}+C_{4} T \\
& \phi_{\mathrm{TS}}=\left(\phi_{\mathrm{RI}}-\phi_{\mathrm{RR}}\right)+\left(\phi_{\mathrm{v}}-\phi_{\mathrm{rr}}\right)\left(\phi_{\mathrm{a}}-\phi_{\mathrm{ar}}\right) \\
& -\phi_{b s}-\phi_{E}+\phi_{H}-\phi_{S}-\phi_{W} \\
& \phi_{\mathrm{SB}}=\phi_{\mathrm{sb}}+\phi_{\mathrm{bb}}+\phi_{\mathrm{cb}}
\end{aligned}
$$

Energy Budget
(Heat Balance)

Table 2.1. Continued.

Bowles et al. (DSTEMP) (Continued)	
Solar Radiation, $\phi_{\mathrm{R}}$	$\phi_{\mathrm{R}}=\mathrm{f}\left(\alpha, \mathrm{R}, \mathrm{R}, \mathrm{d}_{\mathrm{g}}, \mathrm{C}\right)$ (Wunderlich, 1972)
	```or by parabolic distribution of nbserved solar radiation between sunrise and sunset or by direct use of observed solar radiation```
Vegetative Radiation, ϕ_{v}	$\phi_{\mathrm{V}}=\sigma\left(\mathrm{T}_{\mathrm{a}}+460\right)^{4}$ (P1uhowski (1970)
	$\phi_{\mathrm{rvr}}=\mathrm{R}_{\ell} \phi_{\mathrm{V}}$
Atmospheric Radiation, ϕ_{a}	$\phi_{\mathrm{a}}=\beta \sigma\left(\mathrm{T}_{\mathrm{a}}+460\right)^{4}$ (Raphael (1962)
	$\phi_{a r}=R_{\ell} \phi_{a}$
Back Radiation, $\phi_{\text {bs }}$	$\phi_{\mathrm{bs}}=0.97 \sigma(\mathrm{~T}+460)^{4} \text { (Anderson (1954) }$
Evaporation, $\phi_{\text {E }}$	$\phi_{E}=\rho L K_{E} U_{a}\left(e_{s}-e_{a}\right)$ (Wunderlich (1972)
Conduction, ϕ_{H}	$\phi_{\mathrm{H}}=0.217\left(\mathrm{~T}-\mathrm{T}_{\mathrm{a}}\right.$) $\mathrm{P} \rho \mathrm{L} \mathrm{K} \mathrm{H}_{\mathrm{H}} \mathrm{U}_{\mathrm{a}}$ (Bowen (1926)
Melting Snow, $\phi_{\text {S }}$	$\phi_{S}=q_{r} \rho\left[L_{f}+c_{S}\left(T-T_{r}\right)\right]$
Surface Layout Renewal, ϕ_{W}	$\phi_{\mathrm{W}}=3.96 \times 10^{4} \mathrm{~K}_{\mathrm{W}}\left(\frac{\mathrm{U}}{\mathrm{~h}}\right)^{0.33}\left(\mathrm{~T}_{\mathrm{S}}-\mathrm{T}\right)$
	(Novotny and Krenke1 (1971)
Streambed Solar Radiation, $\phi_{S b}$	$\phi_{s b}=0.4\left(1-R_{b}\right) \phi_{R} \exp (-z h)$
Streambed Back Radiation, $\phi_{b b}$	$\phi_{\mathrm{bb}}=\varepsilon \sigma\left(\mathrm{T}_{\mathrm{b}}+460\right)^{4}$
```Streambed Conduction, \phicb```	$\begin{equation*} \phi_{\mathrm{cb}}=\alpha_{1}+\alpha_{2} \phi_{\mathrm{Sb}}+\alpha_{3} \mathrm{~T}_{\mathrm{g}}+\alpha_{4} \mathrm{~T} \text { (Comer et al. } \tag{1975} \end{equation*}$
Other Terms	Point Loads $T_{B}=\frac{Q T+Q_{i n} T_{i n}}{Q+Q_{i n}}$
	Unsteady flow from Implicit Dynamic Routing Program (Fread, 1973), variable cross-sections, tributaries, point and diffuse thermal loads, variable meteorologic data across stream system, dynamic representation of temperature, dispersion neglected

## NOTATION FOR TABLE 2.1.







A Multi-Parametric Mathematical Model of Water Quality by Harper (1972) was based on the basic advection-dispersion equation with the addition of a source-sink term, $S(x, t)$, which varied for each water quality parameter considered (see Table 2.1).

For stream temperature, the source-sink term was:

$$
S_{t}=\frac{\phi_{T}}{c_{p} \gamma_{h}} \cdot . . . \quad 2.2
$$

in which
$S_{t}=$ Rate of change in temperature
$\phi_{\mathrm{T}}=$ Net heat transfer, positive if net flow of heat is to the water
$h \quad=\quad$ Mean depth of flow at cross-section
$\mathrm{c}_{\mathrm{p}}=$ Isobaric specific heat of water
$\gamma=$ Unit weight of water
Net heat transfer components considered were incident solar radiation ( $\phi_{R}$ ), conducive heat transfer ( $\phi_{H}$ ), effective back radiation $\left(\phi_{B}\right)$, and evaporative heat transfer ( $\phi_{E}$ ). Equations for estimation of these components were provided, except for incident solar radiation. Harper suggested that solar radiation should be measured directly or calculated as a function of solar altitude, site latitude, and cloud cover, as reported by Raphael (1962).

An additional source-sink term for advective sources includes point loads, tributaries, and groundwater inflow. A simple mass
balance ratio was used to define a new boundary temperature and discharge. By dividing the modeled stream into reaches of constant physical and dynamic characteristics, such as cross-sectional area, discharge, and dispersion coefficients, and using these variables as new boundary conditions, the simulation equation may be further simplified. Harper assumed steady flow, uniform cross-sectional area, and a constant dispersion coefficient while employing these boundary condition techniques.

Other possible sources and sinks which are assumed negligible are heat transfer to the ground, internal heat generated by chemical and biological reactions, and friction losses.

A model developed by Dailey and Harleman (1972) is divided into two parts: a hydraulic submodel, and a water quality submodel which includes a temperature component (see Table 2.1). Due to several shortcomings, this model was later modified (Harleman et al., 1973). Apart from a deficient derivation of terms in the temperature equation, the 1972 model failed to allow for variations in flow characteristics and variability of meteorological conditions. Harleman et al. (1973) stated that the earlier model was valid for temperature only when lateral inflow was zero.

In terms of the developed equation, the new model of Harleman et al. differs from the Dailey and Harleman (1972) model by only a flux term $\phi_{T}$. Rather than using the linearized simplification of the surface
heat flux, $\phi_{\mathrm{T}}$ was calculated at each mesh point and time step by the following equation:

$$
\begin{aligned}
\phi_{T}= & \phi_{R}-\left\{4 \times 10^{8} \mathrm{~T}_{\mathrm{S}}+460\right)^{4}+\mathrm{f}\left(\mathrm{U}_{\mathrm{a}}\right)\left[\left(\mathrm{e}_{\mathrm{s}}-\mathrm{e}_{\mathrm{a}}\right)+\right. \\
& \left.\left..255\left(\mathrm{~T}_{\mathrm{s}}-\mathrm{T}_{\mathrm{a}}\right)\right]\right\} \quad . \quad 1.3
\end{aligned}
$$

Harleman et al. (1973) also used the equilibrium temperature concept, developed by Edinger and Geyer (1965). They defined the equilibrium temperature $\mathrm{T}_{\mathrm{E}}$ as the temperature at which, under a given set of meteorological conditions, the net surface heat flux is equal to zero. Equilibrium temperature may be found by substituting $T_{E}$ for $T_{S}$ in Equation 2.3 and $\phi_{T}=0$. Jobson and Yotsukura (1972) concluded that the introduction of the equilibrium temperature concept has been unnecessary and inconvenient due to its dependence on trial-and-error solution, error from the linearization effect of $T_{E}$, and inadequacy in predicting diurnal fluctuations.

Also included in this model are source terms allowing for waste heat discharge (WHD) and tributary heat discharges (THD). Development of net surface heat flux (Equation 2.3) was made under the as sumption that radiation, convection, and evaporation are several orders of magnitude higher than other possible sources or sinks, such as heat fluxes via evaporated water and direct rainfall. Of particular interest is the rationale used for neglecting stream bed heat transfer:

Heat transfer between a body of water and the environment can occur through the free surface and through the bottom and sides. In the latter case, the heat flux is limited by conduction in the adjacent soil and remains very small because of generally low thermal conductivity of earth and because the temperature gradients are limited. (Harleman et al., 1973, p. 89)

A model by Novotny and Krenkel (1973) describes the dynamic nature of the air-water interface of a turbulent river (see Table 2.1). It is assumed that the primary mechanism of heat transfer is turbulent motion of the water surface. Also, it is stressed that the water surface temperature is different from the bulk temperature. Timofeyev and Malevskiy-Malevich (1967) report that the difference may be as great as several tenths of a degree Celsius.

Novotny and Krenkel (1973) develop a thermal energy budget under the assumption that all thermal energy acts on the air-water interface. Heat transfer across the stream bed-water interface is not considered. Pailey et al. (1974) developed a closed-form solution of the unsteady one-dimensional advection-diffusion equation for temperature distributions downstream from a thermal load input (see Table 2.1). Rigorous solution of the conservation of thermal energy equation was made by assuming complete mixing, uniformity of stream cross-section, discharge, and diffusion coefficient, and linearity of surface heat exchanges. Pailey et al. (1974) state that the surface heat exchange term $\phi_{T}$ can be expressed as a
linear function of the mixed temperature of the stream, without significant loss of accuracy. The linear relation is given as

$$
\phi_{T}=-(\epsilon T+\eta) \text {. . . . . . . . . . . . } 2.4
$$

where $\eta$ = the base heat exchange rate corresponding to a stream temperature of $0^{\circ} \mathrm{C} ; \mathrm{T}=$ stream temperature in ${ }^{\circ} \mathrm{C}$; and $\epsilon=$ a heat exchange coefficient. Values for $\epsilon$ and $\eta$ for various wind velocities, relative humidities, and air and stream temperatures are determined by approximate relations given by Dingman and Assur (1967). Correlation coefficients of at least 0.999 were found between the derived linear relation and the more involved energy budget.

Also presented are the linear relations of the equilibrium temperature model by Edinger and Geyer (1965) and an excess temperature model by Jobson and Yotsukura (1972).

Pailey et al. (1974) state that heat dispersed in a receiving water is eventually transferred to the atmosphere by evaporation, radiation, or by conduction as sensible heat. "There may be some transfer of heat at the soil-water interface due to infiltration of river water into the ground. The amount of heat transferred by diffusion and dispersion in the porous media, however, is generally very small and may be neglected.' (p. 531)

The stream temperature submodel of QUAL-1 (Texas Water Development Board, 1971) is also based on the general heat budget equation (see Table 2.1). Net solar and atmospheric radiation are found
analytically from basic input such as cloud cover, latitude, sun declination, air temperature, wind speed, and relative humidity. Minimal input requirements make QUAL-1 a valuable management tool.

The dynamic character of QUAL-1 is evidenced by the fact that it allows stream cross-section and longitudinal dispersion coefficients to vary with distance downstream. This permits the stream to be broken into discrete reaches of similar characteristics, allowing varying degrees of resolution. Subdivision of the stream into reaches allows more accurate handling of tributaries and inflows by redefining reach boundary conditions.

The authors of QUAL-1 state that the model considers "all heat transferred across the mud-water interface. In the absence of groundwater flow, heat is transported across the mud-water interface only by molecular conduction which is relatively insignificant in comparison to surface heat exchange." (Texas Water Development Board, 1971, p. 14)

A model by Morse (1970) ignores the second order dispersion term in the traditional conservation of energy equation and thus provides for an exact solution to the following equation:

$$
\frac{\partial T}{\partial t}+U \frac{\partial T}{\partial x}=\frac{\phi}{C_{p} \rho h} \text {. . . . . . . . . . . } 2.5
$$

The energy budget term $\phi_{T}$ is found by a statistical technique applied to local meteorological data. Solution of this model requires a minimal amount of data input: backwater profiles, discharge, and cross-
sectional areas and widths. Heat exchange with the bottom and sides of the river is neglected.

In his stream temperature models Brown $(1969,1972)$ considers streambed heat transfer (see Table 2.1). Brown (1969, p. 74) states that "the phenomenon of bottom conduction, such as that measured on the rock-bottomed stream of the H. J. Experimental Forest, has not been considered elsewhere."

Brown's prediction equation is not dynamic, but is concerned with the temperature change in a small stream when exposed to sunlight as a result of clear-cutting of trees which formerly provided shading to the stream. The 1969 model has the form:

$$
\Delta T_{P R}=\frac{A_{S} \phi_{T}}{Q}(0.000267) \quad . \quad . \quad . \quad . \quad . \quad . \quad 2.6
$$

where $\triangle T_{P R}$ is predicted temperature change after traveling through a given stream reach, $A_{S}$ is surface area of the study section, $Q$ is discharge, $\phi_{\mathrm{T}}$ is change in the thermal energy budget, and the 0.000267 term is a proportionality constant which converts cfs to lb.water/min. so that Btu's may be expressed as change in ${ }^{\mathrm{O}} \mathrm{F}$. The energy budget $\phi_{\mathrm{T}}$ is comprised of source and sink equations found throughout literature, but in addition, includes the streambed heat transfer term:

$$
\phi_{\mathrm{SB}}=\mathrm{K}_{\mathrm{SB}} \frac{\mathrm{dT}}{\mathrm{dz}} .
$$

where $\phi_{S B}$, the heat transfer through the streambed is equal to the product of $\mathrm{K}_{\mathrm{SB}}$, the streambed material thermal conductivity, and $\mathrm{dT} / \mathrm{dz}$, the streambed temperature gradient. The bed transfer term is a function of conduction only and did not consider heat transport due to groundwater inflow.

Brown (1969) measured temperature gradients in streambeds of gravel and bedrock materials by the use of copper-constantan thermocouples placed at 1 cm intervals but at an unspecified depth. Thermocouples were simply inserted into the streambed of two gravel streams. The temperature gradient in bedrock material was found by removing boulders similar to the streambed, fitting them with thermocouples, and then placing them in water baths which simulate stream temperatures. Although the bedrock measurements were not in situ, Brown concluded that up to 25 percent of the energy absorbed by a bedrock bottom stream may be transferred to the bed. No consideration was given to the fate of this thermal energy. Brown (1969, p. 74) concluded that:

Consideration of this energy budget component was essential for accurate temperature prediction. The rock acted as an energy sink during midday hours and as an energy source later in the day. In contrast, gravel bottoms seem to be insignificant energy sinks. Although temperature gradients were measured in the gravel-bottomed stream, thermal conductivities of the water-gravel mixture, approximately 0.05 $\mathrm{Btu} / \mathrm{ft}^{2}$-inch-min ${ }^{\mathrm{O}} \mathrm{F}$, were too low to provide any heat exchange that noticeably affected the predictions.

In later work, Brown (1970) simplified the temperature change equation by reducing the energy budget $\phi_{\mathrm{T}}$ to net radiation, $\phi_{\mathrm{NR}}$. Rationale for this simplification was the observation that, for the stream studied, 95 percent of the heat input during the midday period of midsummer was accounted for by solar radiation. Streambed conduction was not included in this less sophisticated model.

The simplified model was the forerunner to an improved temperature prediction model for small streams (Brown, 1972). This study included further observations of streambed conduction. Thermocouples were placed at 1 cm vertical intervals and at an unspecified depth in gravel bottomed streams and in a bedrock boulder, but on this occasion the boulder was returned to the stream.

Results of this study showed gravel-bottomed streams to be effectively isothermal in the upper 20 cm layer. Gradients of $0.05^{\circ} \mathrm{C} /$ cm or less were observed between the 5 cm layer and the surface. A maximum gradient of $1.1^{\circ} \mathrm{C}$ was observed between the 20 cm layer and the surface. Midday temperature gradients of $0.45^{\circ} \mathrm{C} / \mathrm{cm}$ were observed in the upper layers of the bedrock. This was about 18 percent of the incoming heat load. Preliminary results from a probe in the gravel bed of Spawn Creek also show isothermal conditions in the upper zone. However, below this zone a significant temperature gradient was observed.

Brown (1972) considered that the isothermal conditions in the top 20 cm of the gravel streambed was due to the free circulation of surface water within this layer because of its open porous nature. He concluded that conductive heat transfer is restricted by point-topoint contact between gravel particles together with the efficient heat transfer between particles and the circulating intergravel water.

Brown (1972) concluded that in bedrock bottom streams, 15 to 20 percent of the net all-wave radiation absorbed by the stream may be lost to the bed. On this basis the magnitude of predicted temperature was reduced by 15 to 20 percent.

## Meteorologic considerations

Past models of stream temperature have considered solar radiation to be the major component of the energy budget. In addition, it is often assumed that radiation is completely absorbed at the air-water interface (Edinger et al., 1968; Edinger and Geyer, 1965; Parker and Krenkel, 1969). This may be valid for deep, turbid rivers, but this assumption is false for clear, shallow streams (Pivovarov, 1973; Viskanta and Toor, 1972). Some investigators recognized transmission of solar energy through water, but considered its effect equilibrated over depth by turbulence (Novotny and Krenkel, 1973).

This is a sound assumption in turbulent streams, but it ignores the fate of radiation which is transmitted to and absorbed by the stream bottom.

The amount of radiant energy which penetrates the water surface depends on surface albedo, as well as water clarity. Primary factors determining albedo are sun elevation, cloud cover, and physical character of the surface. Water has a relatively low albedo which varies from 3 percent to 10 percent (Dake and Harleman, 1969). The net solar radiation reaching the water surface is:

$$
\phi_{\mathrm{O}}=(1-\text { albedo }) \phi_{\mathrm{S}} . \quad 2.8
$$

where $\phi_{S}$ is the total solar radiation reaching the surface.
Pivovarov (1973) gives a simplified formula for calculating albedo under clear skies and medium surface turbulence as

$$
\text { Albedo }=\frac{\mathrm{a}}{\sin \mathrm{~h}_{\mathrm{o}}+\mathrm{a}} \cdot . \quad 2.9
$$

where $a=0.04$ is an empirical parameter and $h_{o}$ is sun elevation in degrees. This equation, however, is not valid for low solar angles. Absorption and scattering of radiant energy water varies with wavelength, and the attenuating properties vary with depth. Pivovarov
notes that the attenuation factor $\eta$, varies greatly in the top water layers where the majority of red and infrared radiation is absorbed, and gives a table of values for $\eta$ for various depths and water bodies. The bulk of the radiant energy which penetrates the surface is attenuated within the first meter depth and is therefore very important in shallow streams. Below this depth, water is penetrated mostly by the visible spectrum.

A function which is commonly given to estimate radiation adsorption with water depth is the exponential

$$
\phi_{(z)}=(1-\beta) \phi_{0} e^{-\eta z} \text {, for } z>0 \text {. . . . . . . } 2.10
$$

in which
$\phi_{(z)}=$ Absorbed radiation
$z=$ Depth below water surface
$\beta=$ Proportion absorbed at water surface ( $\simeq 0.60$ )
$\phi_{0}=$ Net solar radiation reaching surface
$\eta \quad=\quad$ Attenuation factor (Dake and Harleman, 1969).
It is easily seen that using this equation, significant portions of the incident solar radiation could penetrate to the stream bottom, especially in shallow streams ( $\mathrm{z} \leq 1.0 \mathrm{~m}$ ).

A model developed by Viskanta and Toor (1972) predicts the internal absorption of solar radiation in natural waters using exact radiative transfer theory. The development considers absorption, scattering, and transmission to and reflection from the bottom.

The streambed is considered to be a diffuse reflector of radiation. Reflectance of the bottom material is assumed to be gray (independent of wavelength) and equal to $0<\rho<1$ where $\rho=1$ is a perfectly reflecting bottom and $\rho=0$ is a perfectly absorbing bottom.

In the case of a perfectly reflecting bottom ( $\rho=1$ ), the rate of internal absorption of water is increased, but in cases when $\rho<1$, which is most often the case in natural waters, the portion which is absorbed by the bed (not reflected) is neglected in this model. However, through interpretation of their graphic results, nearly 50 percent of the total flux incident on the water surface is absorbed by the bottom when $\rho=0$ and depth is 1 meter, and 25 percent of the total flux is absorbed by the bottom when $\rho=0.5$.

## CHAPTER 3

DYNAMIC STREAM TEMPERATURE

## MODEL DESCRIPTION

Introduction

The Dynamic Stream Temperature Model (DSTEMP) described in this chapter is designed to be used in conjunction with a flood routing technique (DNRT) developed by the Hydrologic Research Laboratory of the National Weather Service, National Oceanic and Atmospheric Administration. Stream geometry and streamflow data generated by the Implicit Dynamic Routing Program (DNRT) (Fread, 1973; Fread, 1974) are used in the temperature model, DSTEMP. Alternatively, these stream geometry and streamflow data may be input directly to DSTEMP without using DNRT. Program capabilities, model formulation, and numerical solution are described below. The various heat exchange processes acting over the air-water and soil-water interfaces are represented by mathematical submodels described in this chapter. A flowchart, input data and decision parameters description, program listing, and two examples of input and output are contained in the DSTEMP Users Manual (Appendix A).

## Program Capabilities

DSTEMP can be applied to the prediction of mean daily stream temperatures or to the prediction of the diurnal variation of stream temperatures. Time and space steps in DNR T and DSTEMP are specified by the user. Successive time steps need not be of equal length. Also subreaches of different lengths can be specified. The program is structured in a flexible manner so that individual components of heat transfer across the stream boundaries can be omitted through user options. Lack of data may necessitate the use of this option for streambed conduction, for example. A choice between three alternative techniques of calculating incident and solar radiation flux at the stream surface is provided. These techniques range from the direct use of observed data, to the calculation of solar radiation flux from meteorologic and astronomical data. The calculation approach requires some coefficient estimation before it can be applied but in return it takes account of local factors affecting solar radiation. A separate subroutine is used to calculate each component of net heat transfer at the stream surface and streambed. Therefore, a technique currently used to estimate one of the heat transfer components may be readily replaced by another technique without changing the main program unless new data requirements are introduced.

Two important features of the meteorologic data requirements are the use of meteorologic data sets and meteorologic time intervals that differ from the computational time intervals. A meteorologic data set comprises a complete set of data for all the meteorologic variables required in DSTEMP. Several meteorologic data sets may be used for modeling a stream system. Each data set is applied to a different group of subreaches for which the observed meteorologic data in the data set are considered representative. Meteorologic data are often available on a daily basis whereas the computational time interval for a diurnal study may be 3 hours, for example. By specifying the ratio of the meteorologic time increment to the computational time increment (IMDT), the user may opt to reuse meteorologic data for several computational time intervals contained within the meteorologic time interval. Figure 3.1 illustrates this feature. In addition, several options to reduce the data preparation requirements were included in the input procedure.

Meteorologic data are assumed to be constant over each computational time interval in which they are used. Thus meteorologic data are treated as cumulated or averaged values over the computational time interval. Examples include dry-bulb temperature which is assumed to be averaged over the computational time interval, and observed solar radiation which is assumed to be the cumulated value in the same interval. In contrast, hydraulic and stream


Figure 3.1. Relationship between computational time intervals and meteorologic time intervals for the case where $\operatorname{IMDT}=8$ and $D T(J J)=3, J J=J,(J+8)$.
temperature data are treated as instantaneous values at each time point. These distinctions are made in the input description contained in the Users Manual (Appendix A), and in the development of the numerical solution in this chapter.

Units used in DNR T and DSTEMP are those used by the National Weather Service and United States Geological Survey in published data which are likely to be used in applications of the models. When programming DSTEMP, an attempt was made to facilitate a future program option in which S.I. or British units could be used. The S.I. option is not available in the current version of DSTEMP.

Provision has been made to treat surface and subsurface lateral inflows separately. A different temperature may be specified for each. In this way unmodeled tributaries, overland flow, interflow, return flows, etc., can be separated from baseflow originating in the groundwater body. Both surface and subsurface lateral inflows can be negative in which case they are outflows from the river and the temperature associated with them is the stream temperature.

Any number of first order tributaries to the main stream can be handled by DNRT and DSTEMP providing dimension statements are adjusted to the appropriate size. Following the technique used in DNRT, tributary flows are input to the main stream as surface lateral inflow uniformly distributed over a specified subreach. Therefore, stream temperatures for a time point are predicted along all the tributaries before
predictions commence on the main stream (see flowchart in Appendix A). In this way the surface lateral inflow temperatures of tributary inflows are available when they are required for temperature predictions on the main stream.

Thermal loads located as point sources are handled by a simple heat balance procedure. Stream temperatures immediately upstream and downstream of the location at which the point load enters the stream are calculated and output.

All data input are printed at the beginning of the program output. Two types of output tables are used: a table of stream temperatures, advective heat sources, and hydraulic data for each computational point at each time point; and a table of components of heat exchange at stream surface and bed for each subreach at each time interval.

## Implicit Dynamic Routing Program (DNRT)

DNR $T$ is a technique for streamflow forecasting in which transient stages and discharges are computed for various forecast points along a river from a given stage or discharge hydrograph at the upstream boundary of a river reach in which a flood wave is propagating (Fread, 1974). The interaction of storage and dynamic effects between a river and its tributaries may be efficiently simulated using DNRT (Fread, 1973). Stages and discharges are computed by an implicit dynamic routing technique in which the complete one
dimensional differential equations of unsteady flow are solved by an implicit four-point finite difference method which necessitates the solution of successive systems of nonlinear equations. A very efficient solution for the nonlinear systems is provided by the Newton-Raphson iterative method used in conjunction with an extrapolation technique and a special quad-diagonal Gaussian elimination procedure. DNRT has been verified on several floods and hurricane surges in the Lower Mississippi River.

Hydraulic and stream geometry data transferred to DSTEMP from DNRT are described in detail by read statements 2 through 13 in the DSTEMP input description contained in Appendix A. These data include: computational time intervals, subreach lengths, crosssectional areas, top widths of flow, wetted perimeters, streamflow rates, stream stages, and surface lateral inflow rates.

## Model Formulation

The model for prediction of average and diurnal stream temperatures was formulated by performing a heat balance on a control volume in the stream (Figure 3.2). Two important assumptions were made: complete and instantaneous mixing over each stream cross-section; and negligible longitudinal diffusion. In addition, heat resulting from biological and chemical processes and from fluid friction was disregarded. Also no attempt was made to represent the situation in

(i) Stream geometry

(ii) Heat fluxes

Figure 3.2. Sub-reach control volume.
which ice formation occurs.
The assumption of complete and instantaneous mixing implies that transverse temperature gradients over a stream cross-section can be neglected. Usually only one stream temperature measurement is available at each water quality station and therefore transverse temperature gradients would be impossible to define except in a few well instrumented streams. The assumption permitted the use of a one-dimensional analysis instead of the more complex two- and threedimensional approaches (Jobson and Yotsukura, 1973). Thus stream temperatures represented by the model were assumed to be average temperatures across the stream cross-section. It should be noted that the cross-section averaged predicted stream temperatures were compared with stream temperatures observed at a single location in the stream cross-section.

Fischer (1973) has stated that longitudinal diffusion, either molecular or turbulent, is relatively unimportant compared to the effect of velocity upon the longitudinal temperature distribution and is, therefore, usually ignored. By neglecting diffusion a first-order rather than a second-order analysis was required. This simplification permitted the use of the implicit four-point finite difference technique which is applicable only to first-order equations. By using the same numerical scheme in both the hydraulic and stream temperature models it is intended that space and time steps will be compatible
in both models. The implicit four-point finite difference scheme allows for variable size space and time steps.

Although frictional heat added to the stream due to boundary roughness was neglected in the current version of DSTEMP, Vugts (1974) indicated that it may not be unimportant. According to Pluhowski (1970) friction heat flux, $\phi_{f}$, can be calculated as follows:

$$
\begin{equation*}
\phi_{f}=\frac{Q \rho s d x}{J} \tag{3.1}
\end{equation*}
$$

in which
Q streamflow rate (cfs)
$\rho$ density of water ( $62.32 \mathrm{lbs} . \mathrm{ft}^{-3}$ )
s slope of subreach (ft. $\mathrm{ft}^{-1}$ )
dx computational space interval on length of subreach (ft)
J a constant ( 778 ft .1 bs . $\mathrm{BTU}^{-1}$ )
Four types of heat flux were considered in the heat balance on the control volume (Figure 3.2):

1. Nonadvective heat exchange across the stream surface.
2. Nonadvective heat exchange across the streambed.
3. Advection of heat associated with stream velocity.
4. Other advective heat fluxes by lateral inflow, tributary inflow, groundwater infiltration and seepage, rainfall and snowfall, and evaporation.

For the purpose of developing the heat balance only the net quantities of nonadvective heat exchange across the stream surface and streambed are considered; these quantities are represented by $\Phi_{S}$ and $\Phi_{b}$, respectively. Each of the components comprising these net terms are described in a later section.

A heat balance over the time interval dt for the subreach control volume shown in Figure 3.2 was obtained by equating the sum of the four types of heat flux to the net change in total heat contained in the control volume. The sign convention adopted was positive for heat fluxes associated with advection of mass into the stream. Heat exchange, such as radiation, which is not associated with mass transfer was treated as positive when the transfer of heat was into the stream.

1. surface heat exchange

$$
\Phi_{\mathrm{s}} \mathrm{~A}_{\mathrm{s}} \mathrm{dt} \quad+\quad \Phi_{\mathrm{b}} \mathrm{~A}_{\mathrm{b}} \mathrm{dt}
$$

3. stream velocity heat flux $+\rho c_{p} A u d t-\rho c_{p}\left[A u T+\frac{\partial}{\partial x}(A u T) d x\right] d t$
4. other advective heat fluxes
$+\rho c_{p} Q{ }_{\ell} d x T_{\ell} d t+\rho c_{p} q_{g} A_{b} T_{g} d t+\rho c_{p} q_{r} A_{s} T_{r} d t-\rho c_{p} q_{e} A_{s} T d t$
change in total heat in control volume

$$
\begin{equation*}
=\rho c_{p} d(A T) d x \tag{3.2}
\end{equation*}
$$

in which
$c_{p} \quad$ specific heat of water at constant pressure (0.9988 BTUlbs ${ }^{-1} \mathrm{deg} . \mathrm{F}^{-1}$ )

A cross-sectional area of stream ( $f t^{2}$ )
$u \quad$ stream velocity (ft. $s^{-1}$ )
dt computational time interval (s)
dx computational space interval or subreach length (ft)
T stream temperature (deg. F)
$\Phi_{s} \quad$ net nonadvective heat exchange across water surface (BTU ft ${ }^{-2} \mathrm{~s}^{-1}$ )
$A_{s}$ stream surface area $\left(\mathrm{ft}^{2}\right)$
$\Phi_{b} \quad$ net nonadvective heat exchange across streambed (BTU ft ${ }^{-2} \mathrm{~s}^{-1}$ )
$A_{b} \quad$ streambed area $\left(f t^{2}\right)$
$Q_{\ell} \quad$ rate of surface lateral inflow (overland flow plus interflow) per unit length of subreach (cfs ft ${ }^{-1}$ )
$\mathrm{T}_{\ell} \quad$ temperature of surface lateral inflow (deg. F )
$q_{g} \quad$ rate of groundwater lateral inflow per unit area of streambed (cfs ft ${ }^{-2}$ )
$T_{g}$ groundwater temperature (deg. F)
$\mathrm{q}_{\mathrm{r}} \quad$ precipitation (ft. $\mathrm{s}^{-1}$ )
$\mathrm{T}_{\mathrm{r}} \quad$ wet-bulb temperature (deg. F )
$\mathrm{q}_{\mathrm{e}}$ evaporation (ft. $\mathrm{s}^{-1}$ )
Equation 3.2 was rearranged and combined with the following substitutions:

$$
\begin{align*}
& Q=A u \quad \text {. . . . . . . . . . }  \tag{3.3}\\
& A_{s}=b d x \quad \cdot  \tag{3.4}\\
& A_{b}=P d x \tag{3.5}
\end{align*}
$$

in which
b top breadth of stream (ft)
P wetted perimeter of stream (ft)
When water leaves the stream by overbank spill, diversions, or seepage the rates of surface $\left(Q_{\ell}\right)$ or groundwater $\left(q_{g}\right)$ lateral inflow are negative. In these cases the temperature of water leaving the stream is the stream temperature, T. Therefore, the advective terms in Equation 3.2 associated with $Q_{\ell}$ and $q_{g}$ are each separated into two terms according to the signs of $Q_{\ell}$ and $q_{g}$. If $Q_{\ell}$ and $q_{g}$ are positive $\left(Q_{\ell}^{+}, q_{g}^{+}\right)$then the temperatures $T_{\ell}$ and $T_{g}$ are used
respectively. When $Q_{\ell}$ and $q_{g}$ are negative $\left(Q_{\ell}^{-}, q_{g}^{-}\right)$then $T$ is used instead of $\mathrm{T}_{\ell}$ and $\mathrm{T}_{\mathrm{g}}$.

Net surface and streambed exchange, $\Phi_{s}$ and $\Phi_{b}$, are each calculated from the summation of a number of component heat transfers which are described in a later section. Some of these components are nonlinear in $T$ and to simplify the numerical solution procedures most stream temperature models employ a linearized approximation for $\Phi_{s}$ and $\Phi_{b}$. Two notable exceptions to this are the parabolic approximations used by Wunderlich (1968) and Morse (1970, 1972a, 1972b). Wunderlich proposed that, depending on the required accuracy and the temperature range of interest, $\Phi_{S}$ may be determined from either

$$
\begin{equation*}
\Phi_{S}=C^{\prime \prime}+B^{\prime \prime} T+A^{\prime \prime} T^{2} \cdot \cdot \cdot \cdot \cdot \tag{3.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\Phi_{S}=C^{\prime}+B^{\prime} T \quad \cdot \quad \cdot \quad . \quad . \quad . \quad . \tag{3.7}
\end{equation*}
$$

in which $C^{\prime \prime}, B^{\prime \prime}, A^{\prime \prime}, C^{\prime}$ and $B^{\prime}$ are determined by least square regression of $\Phi_{s}$ against $T$. Values of $\Phi_{S}$ were calculated for a range of values of $T$ and using monthly averages of daily meteorologic data. Morse refined Wunderlich's work to 3 hour time intervals and used least squares to estimate a set of values of $C^{\prime \prime}, B^{\prime \prime}, A^{\prime \prime}, C^{\prime}$, and $B^{\prime}$ for each of the eight 3 hour time intervals in a day. Meteorologic
data for calculating $\Phi_{s}$ was obtained for each of the eight 3 hour time intervals in a day by averaging over the same 3 hour periods in several successive days. Morse (1970) reported that the parabolic relationship provided a statistically better fit than the linear relationship when applied to calculated surface heat exchange for the Columbia River over a 10 day period in July, 1966. By averaging meteorologic data over a period of several days, it is assumed that these data are essentially constant over the averaging period. A cooling trend during one study period led Morse (1972a) to the observation that more representative results can be obtained from shorter averaging periods. However, as fewer days are used to estimate the least square coefficients statistical confidence in the estimated values decreases.

The approach of Wunderlich and Morse to developing a parabolic approximation for the net surface exchange by least squares can be applied to development of the linear relationship in Equation 3.7. Other linearization procedures include the concept of an equilibrium temperature, the use of a truncated Taylor series expansion of the nonlinear terms in $\Phi_{S}$ and $\Phi_{b}$, and the use of empirical linear approximations to the nonlinear terms in $\Phi_{s}$ and $\Phi_{b}$.

Equilibrium temperature, $\mathrm{T}_{\mathrm{E}}$, is the stream temperature at which $\Phi_{S}$ is zero. Edinger and Geyer (1965) first proposed the use
of equilibrium temperature for linearizing the net surface exchange as follows:

$$
\begin{equation*}
\Phi_{S}=-K\left(T-T_{E}\right) \tag{3.8}
\end{equation*}
$$

in which $K$ is the surface heat transfer coefficient (BTU ft ${ }^{-2} \mathrm{~s}^{-1}$ deg. $\mathrm{F}^{-1}$ ). $\mathrm{T}_{\mathrm{E}}$ must be obtained by a cumbersome trial and error procedure and its value can vary by up to 90 deg . F on a diurnal basis (Edinger et al., 1968). Therefore in their discussion of linearization techniques for $\Phi_{s}$ Jobson and Yotsukura (1973) describe the equilibrium temperature concept as "inadequate for predicting diurnal fluctuations in water temperature." They concluded that "the introduction of the equilibrium temperature concept has been both unnecessary and inconvenient."

Another approach to linearizing nonlinear terms in $\Phi_{S}$ is by using the first two terms in the Taylor series expansion about an arbitrary reference temperature, $T_{R}$. By careful selection of $T_{R}$ linearization errors may be minimized (Jobson and Yotsukura, 1973).

In DSTEMP empirical linear approximations, piecewise-linear approximations, and least squares linear approximations to nonlinear components of $\Phi_{s}$ and $\Phi_{b}$ are employed. Thus $\Phi_{s}$ and $\Phi_{b}$ are expressed in the linear forms:

$$
\begin{align*}
& \Phi_{s}=C_{1}+C_{2} T=\sum_{i=1}^{n}\left(c_{1}^{i}+c_{2}^{i} T\right) \cdot . \cdot  \tag{3.9}\\
& \Phi_{b}=C_{3}+C_{4} T=\sum_{i=1}^{m}\left(c_{3}^{i}+c_{4}^{i} T\right) \cdot \tag{3.10}
\end{align*}
$$

in which each of the $n$ components of $\Phi_{S}$ are expressed in the linear form $c_{1}^{i}+c_{2}^{i} T$ and each of the $m$ components of $\Phi_{b}$ are expressed in the linear form $c_{3}^{i}+c_{4}^{i}$ T. Calculation of $c_{1}^{i}, c_{2}^{i}, c_{3}^{i}$, and $c_{4}^{i}$ is discussed in a later section in which estimation of the surface and streambed heat exchange components are described. Coefficients $C_{1}$, $C_{2}, C_{3}$, and $C_{4}$ were obtained as follows:

$$
\begin{align*}
& C_{1}=\sum_{i=1}^{n} c_{1}^{i}  \tag{3.11}\\
& C_{2}=\sum_{i=1}^{n} c_{2}^{i}  \tag{3.12}\\
& C_{3}=\sum_{i=1}^{m} c_{3}^{i}  \tag{3.13}\\
& C_{4}=\sum_{i=1}^{m} c_{4}^{i} \tag{3.14}
\end{align*}
$$

The rearranged form of Equation 3.2, including the substitution of Equations 3.3, 3.4, 3.5, 3.9, and 3.10, and the addition of the extra terms associated with negative surface and groundwater lateral inflows is as follows:

$$
\begin{align*}
\frac{\partial(A T)}{\partial t} & +\frac{\partial(Q T)}{\partial x}-\left[\frac{b C_{1}+P C_{3}}{\rho c_{p}}+Q_{\ell}^{+} T_{\ell}+q_{g}^{+} P T_{g}+q_{r} b T_{r}\right] \\
& -\left[\frac{b C_{2}+P C_{4}}{\rho c_{p}}+Q_{\ell}^{-}+q_{g}^{-} P-q_{e} b\right] T=0 . \quad . \tag{3.15}
\end{align*}
$$

## Numerical Solution

## Implicit four-point finite

difference scheme
Explicit finite difference techniques applied to the solution of the unsteady flow equations are restricted by numerical stability considerations to very small computational time steps of the order of minutes or seconds. Therefore, the explicit method is very inefficient for stream simulations lasting several days or weeks. In contrast implicit finite difference techniques have no restrictions on the size of the specified time interval due to computational stability; however, accuracy constraints may limit its size.

The generalized implicit four-point finite difference scheme utilized by Fread in DNR T allows for variable size space intervals $\Delta x$ and time intervals $\Delta t$. Figure 3.3 contains a four-point grid identified by the intersections of the vertical lines $x_{i}$ and $x_{i+1}$ with the horizontal lines $t^{j}$ and $t^{j+1}$. Finite differencing is carried out for a point $M$ within the four-point grid. At the point $M$ the


Figure 3.3 Network of points on ( $\mathrm{x}, \mathrm{t}$ ) plane for the generalized implicit four-point finite difference method (adapted from Amein and Fang, 1970).
value of a function $K(M)$ is represented by:

$$
\begin{equation*}
K(M) \simeq \theta\left(\frac{K_{i}^{j+1}+K_{i+1}^{j+1}}{2}\right)+(1-\theta)\left(\frac{K_{i}^{j}+K_{i+1}^{j}}{2}\right) \tag{3.16}
\end{equation*}
$$

in which $\theta$ is a weighting factor determining the location of $M$ between the two adjacent time lines $t^{j}$ and $t^{j+1}$. Space and time partial derivatives of $K(M)$ are approximated by:

$$
\begin{align*}
& \frac{\partial K(M)}{\partial x} \simeq \theta\left(\frac{K_{i+1}^{j+1}-K_{i}^{j+1}}{\Delta x_{i}}\right)+(1-\theta)\left(\frac{K_{i+1}^{j}-K_{i}^{j}}{\Delta x_{i}}\right)  \tag{3.17}\\
& \frac{\partial K(M)}{\partial t} \simeq \frac{K_{i}^{j+1}+K_{i+1}^{j+1}-K_{i}^{j}-K_{i+1}^{j}}{2 \Delta t^{j}} \quad . \quad . \tag{3.18}
\end{align*}
$$

Fread (1974) found that for slowly varying transients in large rivers $\theta=0.55$ minimizes the loss of accuracy associated with greater values while avoiding the possibility of a weak or pseudo-instability.

Numerical solution of advection equations

The gencralized implicit four-point finite difference scheme used in the routing model DNR T (Fread, 1973; Fread, 1974) was also applied in DSTEMP. Substituting Equations 3.16, 3.17, and 3.18 into the advection equation (Equation 3.15) yields the following:

$$
\begin{aligned}
& \frac{1}{2 \Delta t^{j}}\left[(A T)_{i}^{j+1}+(A T)_{i+1}^{j+1}-(A T)_{i}^{j}-(A T)_{i+1}^{j}\right] \\
& +\frac{\theta}{\Delta x_{i}}\left[(Q T)_{i+1}^{j+1}-(Q T)_{i}^{j+1}\right]+\frac{(l-\theta)}{\Delta x_{i}}\left[(Q T)_{i+1}^{j}-(Q T)_{i}^{j}\right] \\
& -\frac{\theta}{2}\left\{\frac{C_{1}}{\rho c_{p}}\left[b_{i}^{j+1}+b_{i+1}^{j+1}\right]+\frac{C_{3}}{\rho c_{p}}\left[P_{i}^{j+1}+P_{i+1}^{j+1}\right]\right. \\
& +\left[\left(Q_{\ell}^{+} T_{\ell}\right)_{i}^{j+1}+\left(Q_{\ell}^{+} T_{\ell}\right)_{i+1}^{j+1}\right]+\left[\left(q_{g}^{+} P T_{g}\right)_{i}^{j+1}+\left(q_{g}^{+}{ }^{+1} T_{g}\right)_{i+1}^{j+1}\right] \\
& \left.+\left[\left(q_{r} b T_{r}\right)_{i}^{j+1}+\left(q_{r} b T_{r}\right)_{i+1}^{j+1}\right]\right\} \\
& -\frac{(1-\theta)}{2}\left\{\frac{C_{1}}{\rho c_{p}}\left[b_{i}^{j}+b_{i+1}^{j}\right]+\frac{C_{3}}{\rho c_{p}}\left[P_{i}^{j}+P_{i+1}^{j}\right]\right. \\
& +\left[\left(Q_{\ell}^{+} T_{\ell}\right)_{i}^{j}+\left(Q_{\ell}^{+} T_{\ell}\right)_{i+1}^{j}\right]+\left[\left(q_{g}^{+} P T_{g}\right)_{i}^{j}+\left(q_{g}^{+} P T_{g}\right)_{i+1}^{j}\right] \\
& \left.+\left[\left(q_{r} b T_{r}\right)_{i}^{j}+\left(q_{r} b T_{r}\right)_{i+1}^{j}\right]\right\} \\
& -\frac{\theta}{2}\left\{\frac{C_{2}}{\rho c_{p}}\left[(b T)_{i}^{j+1}+(b T)_{i+1}^{j+1}\right]+\frac{C_{4}}{\rho c_{p}}\left[\left(\text { P T }_{i}^{j+1}+(P T)_{i+1}^{j+1}\right]\right.\right. \\
& +\left[\left(Q_{\ell}^{-} T\right)_{i}^{j+1}+\left(Q_{\ell}^{-} T\right)_{i+1}^{j+1}\right]+\left[\left(q_{g}^{-} P T\right)_{i}^{j+1}+\left(q_{g}^{-} P T\right)_{i+1}^{j+1}\right] \\
& -\left[\left(q e^{b T)_{i}^{j+1}}+\left(q_{e} b T\right)_{i+1}^{j+1}\right]\right\}
\end{aligned}
$$

$$
\begin{align*}
& -\frac{(1-\theta)}{2}\left\{\frac{C_{2}}{\rho c_{p}}\left[(b T)_{i}^{j}+(b T)_{i+1}^{j}\right]+\frac{C_{4}}{\rho c_{p}}\left[(P T)_{i}^{j}+(P T)_{i+1}^{j}\right]\right. \\
& \quad+\left[\left(Q_{\ell}^{-} T\right)_{i}^{j}+\left(Q_{\ell}^{-} T\right)_{i+1}^{j}\right]+\left[\left(q_{g}^{-} P T\right)_{i}^{j}+\left(q_{g}^{-} P T\right)_{i+1}^{j}\right] \\
& \left.\quad-\left[\left(q_{e} b T\right)_{i}^{j}+\left(q_{e}^{b T}\right)_{i+1}^{j}\right]\right\}=0 \quad \cdot \quad \cdot \quad \cdot \quad \cdot \quad \cdot(3.1 \tag{3.19}
\end{align*}
$$

In DSTEMP $Q_{\ell}^{+}, Q_{\ell}^{-}$, and $T_{\ell}$ were assumed invariant over a subreach $\Delta x_{i}$. In the general nomenclature of Equations 3.16, 3.17, and 3.18 this invariance can be expressed as:

$$
\begin{equation*}
K_{i}^{j}=K_{i+1}^{j} \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{i}^{j+1}=K_{i+1}^{j+1} \tag{3.21}
\end{equation*}
$$

Also $q_{g}^{+}, q_{g}^{-}, T_{g}, q_{r}, T_{r}$, and $q_{e}$ were assumed invariant over a subreach $\Delta x_{i}$ and a time interval $\Delta t^{j}$. In the case of invariance of $T_{r}$ over $\Delta t^{j}$, for example, it was assumed that the value of wet-bulb temperature was the average value over the time interval $\Delta t^{j}$. Invariance of $q_{r}$ over $\Delta t^{j}$ implies that $q_{r}$ is the depth of precipitation cumulated over the time interval $\Delta t^{j}$. In the general nomenclature of Equations 3.16, 3.17, and 3.18 the invariance over $\Delta x_{i}$ and $\Delta t^{j}$ can be expressed as:

$$
\begin{equation*}
K_{i}^{j}=K_{i+1}^{j}=K_{i}^{j+1}=K_{i+1}^{j+1} \quad \cdot \quad \cdot \cdot \cdot \cdot \cdot \tag{3.22}
\end{equation*}
$$

Equation 3.19 was rearranged into the following general form after substitution of Equations 3.20,3.21, and 3.22 applied to the appropriate variables:

$$
\begin{equation*}
A_{i} T_{i}^{j+1}+B_{i} T_{i+1}^{j+1}=C_{i} T_{i}^{j}+D_{i} T_{i+1}^{j}+E_{i} \tag{3,23}
\end{equation*}
$$

in which $A_{i}, B_{i}, C_{i}, D_{i}$, and $E_{i}$ are coefficients that are independent of T. Equation 3.23 was then solved for $T_{i+1}^{j+1}$ :

$$
\begin{equation*}
T_{i+1}^{j+1}=\frac{C_{i} T_{i}^{j}+D_{i} T_{i+1}^{j}+E_{i}-A_{i} T_{i}^{j+1}}{B_{i}} \tag{3.24}
\end{equation*}
$$

To improve the program efficiency "array look-ups" and repeated identical calculations were minimized by the introduction of dummy variables defined in Table 3.1. In terms of these dummy variables, the coefficients in Equations 3.23 and 3.24 are defined as follows:

$$
\begin{align*}
& A_{i}=D 5 * D 27-D 6 *(Q)_{i}^{j+1}-D 2 *(D 14 * D 17+D 13 * D 21+D 15) \\
& B_{i}=D 5 * D 28-D 6 * D 25-D 2 *(D 14 * D 18+D 13 * D 22+D 15)  \tag{3.25}\\
& C_{i}=D 5 * D 29+D 7 *(Q)_{i}^{j}+D 3 *(D 14 * D 19+D 13 * D 23+D 16)  \tag{3.26}\\
& D_{i}=D 5 * D 30-D 7 *(Q)_{i+1}^{j}+D 3 *(D 14 * D 20+D 13 * D 24+D 16) \tag{3.27}
\end{align*}
$$

Table 3.1 Definition of dummy variables used in DSTEMP and in Equations 3.25 through 3.29.

Dummy   variable	Equation form	Program form
D1	$(1-\theta)$	1 - THETA
D2	$\theta / 2$	THETA/2
D3	$(1-\theta) / 2$	D1/2
D4	$1 / \rho c_{p}$	$1 /(\mathrm{RHO} * \mathrm{CP})$
D5	$1 / 2 \Delta t^{j}$	1/(2*DT(J))
D5A	$1 / \Delta t^{j}$	$2 *$ D 5
D6	$\theta / \Delta \mathrm{x}_{\mathrm{i}}$	THETA/DX
D7	$(1-\theta) / \Delta x_{i}$	DI/DX
D8	$C_{1} / \rho c_{p}$	D4*C1
D9	$\mathrm{C}_{2} / \rho \mathrm{c}_{\mathrm{p}}$	D4*C2
D10	$\mathrm{C}_{3} / \rho \mathrm{c}_{\mathrm{p}}$	D4*C3
D11	$C_{4} / \rho c_{p}$	D $4 *$ C 4
D12	$\frac{\mathrm{C}_{3}}{\mathrm{c}_{\mathrm{p}}}+\left(\mathrm{q}_{\mathrm{g}}^{+} \mathrm{T}_{\mathrm{g}}\right)_{i}$	D10+QGP*D31
D13	$\frac{\mathrm{C}_{4}}{\mathrm{c}_{\mathrm{p}}}+\left(\mathrm{q}_{\mathrm{g}}^{-}\right)_{\mathrm{i}}$	Dll+QGM
D14	$\frac{\mathrm{C}_{2}}{\mathrm{c}_{\mathrm{p}}}-\left(\mathrm{q}_{\mathrm{e}}\right)_{\mathrm{i}}^{j}$	D9-QEE
D15	$\left(Q_{\ell}^{-}\right)_{i}^{j+1}$	QLM (2)
D16	$\left(Q_{\ell}^{-}\right)_{i}^{j}$	QLM(1)

Table 3.1 Continued.

Dummy variable	Equation form	Program form
D17	$(b)_{i}^{j+1}$	BD(I, Jl, K)
D18	$\text { (b) }{ }_{i+1}^{j+1}$	BD(Il, J1, K)
D19	$(b)_{i}^{j}$	BD(I, J, K)
D20	$(b)_{i+1}^{j}$	BD(Il, J, K)
D21	$(P)_{i}^{j+1}$	PM(I, J1, K)
D22	$(P)_{i+1}^{j+1}$	PM(Il, J1, K)
D23	$(P)_{i}^{j}$	PM(I, J, K)
D24	$(P)_{i+1}^{j}$	PM(Il, J, K)
D25	$(Q)_{i+1}^{j+1}$	QS(Il, J1, K)
D26	$\frac{\mathrm{C}_{1}}{\mathrm{c}_{\mathrm{p}}}+\left(\mathrm{q}_{\mathrm{r}} \mathrm{~T}_{\mathrm{r}}\right)_{\mathrm{i}}^{j}$	$\mathrm{D} 8+\mathrm{QRR}$ *TRR
D27	$(A)_{i}^{j+1}$	CSA (I, J1, K)
D28	$(A)_{i+1}^{j+1}$	CSA(Il, J1, K)
D29	$(\mathrm{A})_{\mathrm{i}}^{\mathrm{j}}$	CSA (I, J, K)
D30	$(A)_{i+1}^{j}$	CSA(Il, J, K)
D31	$\left(\mathrm{T}_{\mathrm{g}}\right)_{\mathrm{i}}$	TG(I, K)

$$
\begin{align*}
E_{i} & =D 2 *\left[D 26 *(D 17+D 18)+D 12 *(D 21+D 22)+2 *\left(Q_{\ell}^{+} T_{\ell}\right)_{i}^{j+1}\right] \\
& +D 3 *\left[D 26 *(D 19+D 20)+D 12 *(D 23+D 24)+2 *\left(Q_{\ell}^{+} T_{\ell}\right)_{i}^{j}\right] \tag{3.29}
\end{align*}
$$

## Point loads

Thermal loads associated with a point inflow to the stream can also be handled by DSTEMP. Point sources must be located inbetween subreaches at computational points. Therefore, it follows from the assumption of instantaneous and complete mixing, that point loads do not enter into the heat balance on the subreach control volume. If point loads are modeled when DSTEMP is used in conjunction with DNRT some care must be exercised. This is because the current version of DNRT does not allow for point loads to be input at a single point. Instead they are represented as lateral inflow over a short subreach. This may not be a realistic means of representing return flows from acooling process for example, that are small in quantity in comparison to the streamflow rate but significant in their impact on stream temperature. Such a point load could probably be neglected in DNR T, but should be included in DSTEMP when seeking to provide a good representation of the stream temperature regime. If a point load is handled as a lateral inflow in DNR $T$ it must be handled in the same manner in DSTEMP and thus its temperature
must be specified as a surface lateral inflow temperature. If a point load is neglected in DNRT because it is small in flowrate but it is thermally significant, then it should be treated as a point load in DSTEMP.

Continuing the assumption of complete and instantaneous mixing point loads are handled by a simple heat balance at the point of entry to the stream:

$$
\begin{equation*}
\left(T^{\prime}\right)_{i+1}^{j+1}=\frac{(\Omega T)_{i+1}^{j+1}+Q_{p}^{T} p}{(Q)_{i+1}^{j+1}+Q_{p}} \cdot \cdot \cdot \cdot \tag{3.30}
\end{equation*}
$$

in which
$\left(T^{\prime}\right)_{i+1}^{j+1} \quad$ stream temperature immediately downstream of point load (indexed by $L=1$ in program) (deg. $F$ )
$Q_{p} \quad$ flowrate of point load (cfs)
$T_{p} \quad$ temperature of point load (deg. F)
Both the values of stream temperature immediately upstream and immediately downstream of the point load are stored in the computer program and printed in the DSTEMP output.

## Heat Exchange Components

## General

The general linear forms of heat exchange components of net nonadvective heat exchange across the surface and streambed are:

$$
\begin{aligned}
& \phi_{\text {ith surface component }}=c_{1}^{i}+c_{2}^{i} T \quad . \quad . \quad . \quad . \quad . \\
& \phi_{\text {ith bed component }=} c_{3}^{i}+c_{4}^{i} T \quad \text { (3.31) }
\end{aligned}
$$

In this section the physical constants, empirical coefficients, and meteorologic, astronomical, and other data required to estimate each component of nonadvective heat exchange as a function of stream temperature are described.

Components of net nonadvective heat exchange across the stream surface are:

$$
\begin{equation*}
\Phi_{\mathrm{s}}=\left(\phi_{\mathrm{s}}-\phi_{\mathrm{sr}}\right)+\left(\phi_{\mathrm{v}}-\phi_{\mathrm{vr}}\right)+\left(\phi_{\mathrm{a}}-\phi_{\mathrm{ar}}\right)-\phi_{\mathrm{b}}-\phi_{\mathrm{e}}+\phi_{\mathrm{c}}-\phi_{\mathrm{sn}}-\phi_{\mathrm{w}} \tag{3.33}
\end{equation*}
$$

in which
$\phi_{\mathrm{S}} \quad$ solar radiation flux incident at stream surface
$\phi_{\text {Sr }} \quad$ solar radiation flux reflected from stream surface
$\phi_{\mathrm{V}} \quad$ vegetative radiation flux incident at stream surface
$\phi_{\mathrm{vr}} \quad$ vegetative radiation flux reflected from stream surface

* atmospheric radiation flux incident at stream surface

中 ar atmospheric radiation flux reflected from stream surface
$\phi_{\mathrm{b}} \quad$ back radiation flux emitted by stream surface
中e heat flux due to latent heat of vaporization associated with evaporation from stream
$\psi_{\mathrm{c}} \quad$ conductive flux across stream surface
$\phi_{\text {sn }}$ heat flux due to latent heat of fusion associated with melting of snow falling into the stream
$\phi_{\mathrm{w}} \quad$ heat flux by surface layer renewal
Components of net nonadvective heat exchange across the streambed are:

$$
\begin{equation*}
\Phi_{\mathrm{b}}=\phi_{\mathrm{bs}}+\phi_{\mathrm{bb}}+\phi_{\mathrm{bc}} \cdot . \cdot . . . \tag{3.34}
\end{equation*}
$$

in which
$\phi_{b s}$ solar radiation flux absorbed by streambed
$\phi_{b b}$ back radiation flux emitted by streambed
$\phi_{b c} \quad$ conductive flux across streambed
The units of each component are BTU ft ${ }^{-2} \mathrm{hr}^{-1}$. User options have been included in DSTEMP to permit inclusion or exclusion of individual components. In this way studies of the sensitivity of stream temperatures to individual components are facilitated. Also components for which adequate data is unavailable can be omitted. However, care must be exercised when excluding components from predictive runs; for example, it is difficult to conceive of a situation in which solar radiation could justifiably be omitted.

Several components are not modeled in the current version of DSTEMP. For these components methods of estimation are proposed in this section. Users could readily introduce these methods into the
empty subroutine shells of the present program if desired.
Equation 3.2 in the model formulation section shows that $\Phi_{S}$ and $\Phi_{b}$ were considered to act over the areas $A_{s}$ and $A_{b}$, respectively. $\phi_{b s}$ was considered to act on an area equal to $A_{s}$ projected onto the streambed. Therefore, the $\phi_{b s}$ component was included in $\Phi_{S}$ instead of $\Phi_{b}$ in the program form of the numerical solution but appears as a component of $\Phi_{b}$ in all output tables.

## Solar radiation

Three techniques for estimating incident and reflected solar radiation flux are included in the current version of DSTEMP:

1. Solar radiation flux calculated.
2. Total daily observed solar radiation flux distributed in parabolic manner between sunrise and sunset.
3. Observed solar radiation flux in computational time interval used directly.

Results from these techniques will be compared and factors to be considered when selecting one of the techniques will be discussed. Firstly, each of the techniques will be described.

Technique 1-calculated solar radiation. A method of calculating solar radiation flux described in detail by Wunderlich (1972) was adapted to DSTEMP. The method is divided into three steps:

1. Solar radiation flux received at the top of the atmosphere.
2. Solar radiation flux received at the ground under a clear sky.
3. Solar radiation flux received at the ground under a cloudy sky.

The computation of solar radiation flux received at the top of the earth's atmosphere, the extraterrestrial solar radiation flux, is based on measured values of radiation emitted by the sun and the trigonometric relationship to express the direct solar beam intensity on a horizontal (tangential) plane (List, 1963). With extraterrestrial radiation flux known, the clear sky solar radiation flux received at the ground is principally a function of atmospheric transmittance. The method used for computation was selected by Wunderlich (1972) as the method that accounts for the maximum effect of local factors (Bolsenga, 1964). Attenuation of solar radiation by clouds is difficult to predict because of the great variety of types, distributions, and albedos of clouds, and the lack of analytical parameters to satisfactorily express this combined effect on solar radiation (Wunderlich, 1972).

Only a summary of the computational technique is presented below. For further details the reader is referred to Wunderlich (1972).

Declination of sun

$$
\begin{aligned}
\sin \delta & =\sin \left(\frac{23.445 \pi}{180}\right) \sin \left[\frac { 2 \pi } { 3 6 0 } \left(279.9348+\frac{360}{2 \pi} d\right.\right. \\
& +1.914827 \sin d-0.079525 \cos d \\
& +0.019938 \sin 2 d-0.001620 \cos 2 d)] \cdot \cdot \cdot(3.35)
\end{aligned}
$$

in which
$\delta$ declination of sun (radians)
$\mathrm{d}=\frac{2 \pi}{365.242}(\mathrm{D}-1) \quad$ (radians) $\quad . \quad . \quad . \quad . \quad . \quad(3.36)$

D day number in the year
Relative distance of earth-sun

$$
\begin{equation*}
r=1+0.017 \cos \left[\frac{2 \pi}{365}(186-\mathrm{D})\right] \tag{3.37}
\end{equation*}
$$

in which
r relative distance of earth-sun (dimensionless)
Hour angle of sunrise

$$
\begin{equation*}
\cos h_{\mathrm{sr}}=\frac{\sin \alpha_{\mathrm{sr}}-\sin \phi \sin \phi}{\cos \phi \cos 0} \tag{3.38}
\end{equation*}
$$

in which
$h_{\text {sr }}$ hour angle of sunrise (radians)
$\alpha_{\text {sr }} \quad$ solar altitude at sunrise (radians)
$\phi \quad$ latitude of the location (radians)

Hour angle of sunset

$$
\begin{equation*}
\cos \mathrm{h}_{\mathrm{SS}}=\frac{\sin \alpha_{\mathrm{SS}}-\sin \phi \sin \delta}{\cos \phi \cos \delta} \quad \cdot \quad \cdot \quad . \quad . \tag{3.39}
\end{equation*}
$$

in which

$h_{\text {SS }}$	hour angle of sunset (radians)
$\alpha_{\text {SS }}$	solar altitude at sunset (radians)

Standard time of sunrise and sunset

$$
\begin{align*}
& \mathrm{STR}=\frac{12}{\pi} \mathrm{~h}_{\mathrm{Sr}}-12+\mathrm{DTSL}-\mathrm{ET}  \tag{3.40}\\
& \mathrm{STS}=\frac{12}{\pi} \mathrm{~h}_{\mathrm{SS}}+12+\mathrm{DTSL}-\mathrm{ET} \tag{3.41}
\end{align*}
$$

in which
STR standard time of sunrise (hours)
STS standard time of sunset (hours)
DTSL time difference between local and standard meridian (hours). DTSL is a constant for the location and is computed by:

$$
\begin{equation*}
\mathrm{DTSL}=\frac{\mathrm{e}}{15}(\mathrm{LSM}-\operatorname{LLM}) \quad \cdot \quad . \tag{3.42}
\end{equation*}
$$

LSM longitude of standard meridian (degrees from Greenwich)
LLM longitude of local meridian (degrees from Greenwich)
$e=-1$ for west longitude
$e=+1$ for east longitude
ET equation of time (hours) given by:

$$
\begin{align*}
E T & =-60(0.123570 \sin d \\
& -0.004289 \cos d+0.153809 \sin 2 d \\
& +0.060783 \cos 2 d) \quad . \quad . \quad \tag{3.43}
\end{align*}
$$

Hour angle-time relationships

$$
\begin{aligned}
& h_{B}=\frac{\pi}{12}\left(S T_{B}-D T S L+E T+\epsilon\right) \quad \cdot \quad \cdot \quad \cdot \\
& h_{E}=\frac{\pi}{12}\left(S T_{E}-D T S L+E T+\epsilon\right) \quad \text { (3.44) }
\end{aligned}
$$

in which
$h_{B} \quad$ hour angle of the beginning of computational time interval (radians)
$h_{E} \quad$ hour angle of the end of computational time interval (radians)
$\mathrm{ST}_{\mathrm{B}} \quad$ standard time of the beginning of computational time interval (hours)
$S T_{E} \quad$ standard time of the end of computational time interval (hours)
$\epsilon=+12$ for standard time before noon
$\epsilon=-12$ for standard time after noon

Solar altitude

$$
\begin{equation*}
\sin \alpha=\sin \phi \sin 0+\cos \phi \cos \delta \cos h \tag{3.46}
\end{equation*}
$$

in which

$$
\alpha \quad \text { solar altitude, } \phi \leq \alpha \leq \frac{\pi}{2} \text { (radians) }
$$

Extraterrestrial solar radiation integrated over computational time interval

$$
\begin{equation*}
q_{o}=\frac{12}{\pi} \frac{I_{0}}{r^{2}}\left[\sin \phi \sin O\left(h_{E}-h_{B}\right)+\cos \phi \cos \delta\left(\sin h_{E}-\sin h_{B}\right)\right] \tag{3.47}
\end{equation*}
$$

in which
$q_{o} \quad$ extraterrestrial solar radiation flux for period ( $h_{E}-h_{B}$ ) (BTUft ${ }^{-2} \mathrm{hr}^{-1}$ )

Io solar constant (429 BTU ft ${ }^{-2} \mathrm{hrs}^{-1}$ )

Precipitable water content of the atmosphere

$$
\begin{equation*}
\mathrm{w}=\exp \left(0.0341 \mathrm{~T}_{\mathrm{d}}-2.0762\right) \tag{3.48}
\end{equation*}
$$

in which
w precipitable water content of the atmosphere (ins.)
$T_{d}$ dew point temperature (deg. $F$ )

Optical air mass

$$
\begin{equation*}
m_{p}=\frac{(1-0.000006879 Z)^{5.256}}{\sin \alpha+0.15\left(\frac{180}{\pi} \alpha+3.885\right)^{-1.253}} \quad . \tag{3.49}
\end{equation*}
$$

in which
$m_{p}$ optical air mass adjusted to local altitude (dimensionless)
Z elevation of subreach above mean sea level (ft)

Mean atmospheric transmission coefficients

$$
\begin{align*}
& a^{\prime}=\exp \left\{-(0.465+0.134 w)\left[0.129+0.171 \exp \left(-0.880 m_{p}\right)\right] m_{p}\right\} \\
& a^{\prime \prime}=\exp \left\{-(0.465+0.134 w)\left[0.179+0.421 \exp \left(-0.721 m_{p}\right)\right] m_{p}\right\} \tag{3.50}
\end{align*}
$$

in which
a' mean atmospheric transmission coefficients after scattering (cm)
a" mean atmospheric transmission coefficient after scattering and absorption (cm)

Solar short wave radiation flux incident at stream surface

$$
\begin{equation*}
q_{i}=q_{o} \frac{\left[a^{\prime \prime}+0.5\left(1-a^{\prime}-d_{p}\right)\right]}{\left[1-0.5 R_{g}\left(1-a^{\prime}-d_{p}\right)\right]}\left(1-0.0065 C^{2}\right)(1-S) . \tag{3.52}
\end{equation*}
$$

in which
$\mathrm{q}_{\mathrm{i}} \quad$ incident solar radiation flux at stream surface (BTU ft ${ }^{-2} \mathrm{hr}^{-1}$ )
$R_{g} \quad$ albedo of ground adjacent to stream (Table 3.2) (dimensionless)
Table 3.2. Total dust depletion coefficient, $d_{p}$. (Summarized by Bolsenga (1964) based on
data by Kimball (1927, 1928, 1930).)

Season	Washington, D.C.		Madison, Wisc.		Lincoln, Nebr.	
	$\mathrm{m}^{\mathrm{a}}=1$	$\mathrm{m}=2$	$\mathrm{m}=1$	$\mathrm{m}=2$	$\mathrm{m}=1$	$\mathrm{m}=2$
Winter	-	0.13	-	0.08	-	0.06
Spring	0.09	0.13	0.06	0.10	0.05	0.08
Summer	0.08	0.10	0.05	0.07	0.03	0.04
Fall	0.06	0.11	0.07	0.08	0.04	0.06

[^0]$d_{p} \quad$ total dust depletion coefficient of the atmosphere (Table 3.3) (dimensionless)

C cloud cover in an integer number of tenths of cover
S fraction of sky shaded from the stream surface by vegetation or other obstructions excluding cloud cover (dimensionless)

Solar short wave radiation flux reflected at stream surface

$$
\begin{equation*}
q_{r}=q_{i} R_{t} \tag{3.53}
\end{equation*}
$$

in which
$q_{i} \quad$ reflected solar radiation flux at stream surface (BTU ft ${ }^{-2} \mathrm{hr}^{-1}$ )
$R_{t} \quad$ reflectivity of water surface given by:

$$
\begin{equation*}
R_{t}=1.18\left(\frac{180}{\pi} \alpha\right)-0.77 \tag{3.54}
\end{equation*}
$$

Technique 2 - distributed observed solar radiation. A method of distributing solar radiation flux in a parabolic manner between sunrise and sunset was adapted from Albertson et al. (1974). The choice of a parabolic distribution was made on the basis of radiation data collected by Raphael (1962). Solar radiation flux incident at the stream surface during the time period ( $h_{E}-h_{B}$ ) was computed as follows (Figure 3.4):

$$
\begin{equation*}
q_{i}=\frac{12 I_{\text {obs }}}{L^{3}}\left[\frac{L}{4}\left(X_{2}^{2}-X_{1}^{2}\right)-\frac{1}{6}\left(X_{2}^{3}-X_{1}^{3}\right)(1-S)\right] \tag{3.55}
\end{equation*}
$$

Table 3.3. Albedo of ground surface, $\mathrm{R}_{\mathrm{g}}$. (After Buttner (1953) and Sutton (1953).)	
Ground Condition	$\mathrm{R}_{\mathrm{g}}$
Meadows and Fields	$0.14^{\mathrm{a}}$
Leave and Needle Forest	$0.07-0.09^{\mathrm{a}}$
Dark, Extended Mixed Forest	$0.045^{\mathrm{a}}$
Heath	$0.10^{\mathrm{a}}$
Flat Ground, Grass Covered	$0.25-0.33$
Flat Ground, Rock	$0.12-0.15$
Sand	0.18
Vegetation Early Summer, Leaves with High Water Content	0.19
Vegetation Late Summer, Leaves with Low Water Content	0.29
Fresh Snow	0.83
Old Snow	$0.42-0.70$

[^1]
Figure 3.4. Parabolic distribution of daily solar radiation flux by technique 2 (adapted from Albertson
et al., 1974).
in which
$q_{i} \quad$ solar radiation flux incident at the stream surface
during the time period ( $\left.h_{E}-h_{B}\right)\left(B T U f t^{-2} h r^{-1}\right)$
$\mathrm{ft}^{-2} \mathrm{hr}^{-1}$ )
$\mathrm{L}=\mathrm{h}_{\mathrm{SS}}-\mathrm{h}_{\mathrm{sr}}$ sunrise - sunset period (hours)
$X_{1}=h_{B}-h_{\text {sr }}$ time from sunrise to beginning of computational
time interval, $h_{B}$ (hours)
$X_{2}=h_{E}-h_{\text {sr }}$ time from sunrise to end of computational time
interval, $h_{E}$ (hours)
fraction of sky shaded from the stream surface by
vegetation or other obstructions excluding cloud
cover (dimensionless)

Solar radiation flux reflected at the stream surface during the time period ( $h_{E}-h_{B}$ ) was computed in the following way:

$$
\begin{equation*}
q_{r}=q_{i} R_{t} \tag{3.56}
\end{equation*}
$$

in which
$R_{t} \quad$ reflectivity of water surface as input by the user (dimensionless)

Technique 3 - observed solar radiation. In this approach solar radiation flux incident at the stream surface was equated to the observed solar radiation in each computational time interval modified
only by a shading factor:

$$
\begin{equation*}
q_{i}=I_{o b s}(1-S) \tag{3.57}
\end{equation*}
$$

and reflected solar radiation at stream surface was estimated by:

$$
\begin{equation*}
q_{r}=q_{i} R_{t} \tag{3.58}
\end{equation*}
$$

In the general form of Equation 3.31 incident and reflected solar radiation flux at the stream surface are given by:

$$
\begin{aligned}
& \phi_{s}=q_{i} \\
& \phi_{S r}=q_{r}
\end{aligned}
$$

Techniques compared. The principal source of error in predicting incident solar radiation lies in handling the effects of cloud cover (Wunderlich, 1972). When observed solar radiation data at one location are used for stream temperature predictions at another location the differences in cloud cover at the two locations can introduce considerable error to surface heat exchange calculations. Times of sunrise and sunset vary for different subreaches in a stream because of the effects of channel orientation and topographic features above which the sun must rise before the solar beam is incident on the water surface. Other factors influencing the amount of solar radiation flux incident on the stream surface include the albedo of the ground
surface adjacent to the stream, $R_{g}$, and the atmospheric transmittance depending in part on the dust depletion coefficient $d_{p}$.

Technique 1 has the advantages of accounting for the variation in local factors such as orientation and topographic effects (described by $\alpha_{S r}$ and $\alpha_{S S}$ ) and the ground surface albedo, $R_{g}$. It has the disadvantage of depending heavily on good cloud cover data. However, unless observed solar radiation data are available close to the study subreaches techniques 2 and 3 also may provide unrealistic estimates of incident and reflected solar radiation. When diurnal predictions are made using daily data technique 2 gives the solar radiation data a distribution which approximates the distribution expected under constant cloud cover conditions. If observed solar radiation data are available at less than a daily frequency then technique 3 should be used if it is considered that these observed data provide a more realistic distribution of solar radiation throughout the day than the parabolic approximation in technique 2. Another approach is to calibrate technique 1 to the site at which solar radiation data were observed. Calibration is achieved by estimating $\alpha_{s r}, \alpha_{S S}, R_{g}$, and $d_{p}$ for the site and then adjusting these coefficients within a reasonable range of values until the observed solar radiation is closely matched. Both the times of sunset and sunrise and also the total amount of observed daily solar radiation should be closely matched. Technique 1
could then be used on each subreach by giving $\alpha_{S r}, \alpha_{S S}$, and $R_{g}$ values appropriate to each subreach. The calculation approach requires some coefficient estimation before it can be applied but in return it takes account of local factors affecting solar radiation.

Figures 3.5 and 3.6 contain the results of sensitivity studies on two coefficients ( $R_{g}$ and $d_{p}$ ) in the computational method of estimating incident and reflected solar radiation flux at the stream surface (technique 1). By raising $R_{g}$ from its lower limit for without-snow conditions ( 0.05 from Table 3.3) to its upper limit for without-snow conditions ( 0.45 ) the cumulative incident solar radiation in a 24 hour period was increased by 27 percent. When $R_{g}$ was further increased to the upper limit for fresh snow conditions ( 0.85 ) the increase in cumulative incident solar radiation over the case where $R_{g}=0.05$ was 72 percent.

Albedo of snow decreases with age over the range 0.85 to 0.4 . Because of the importance of $R_{g}$ in determining the incident solar radiation flux it appears that a snowpack simulation to determine the presence of snow and the albedo of the snow surface should be developed. The relative importance of solar radiation to the total heat budget in times of snow should be evaluated before proceeding with the snowpack simulation. A snowpack routine applied by Bowles et al. (1975) in a watershed simulation model could be adapted for this purpose.


Figure 3.6. Sensitivity of incident solar radiation to total dust depletion coefficient (d ${ }_{p}$ ).

Incident solar radiation flux was shown to be fairly insensitive to the dust depletion coefficient, $d_{p}$ (Figure 3.6). By varying $d_{p}$ over its range for the summer season, 0.02 to 0.10 (Table 3.2) cumulative incident solar radiation decreased by less than 4 percent.

Figure 3. 7 is a comparison of cumulated incident solar radiation calculated by the three techniques available in DSTEMP. Observed data were recorded at Utah State University (USU) which is located 15 miles ( 24 km ) southwest of the study stream, Spawn Creek. The discrepancy between the calculated $($ ITECH $=1)$ and observed (ITECH $=3$ ) lines can be attributed to several factors: topographic differences between the measurement site and study stream (different $\alpha_{S r}$ and $\alpha_{S S}$ ); different albedos of adjacent ground ( $\mathrm{R}_{\mathrm{g}}$ ) at measurement site and study area; and cloud cover (C) differences between the valley location of the measurement site and the mountain location of the study stream. If the observed data were adjusted for topographic, and ground albedo differences, it is believed that the value of $R_{g}$ could be reduced to a more realistic value for Spawn Creek and that the results from techniques 1 and 3 would be closer over the entire 24 hour period.

Technique 2 represents a different distribution of the same total amount of radiation that is predicted in technique 3. An important factor determining the different distributions is that sunrise and sunset times used in technique 2 were estimated for Spawn Creek and not

Figure 3.7. Comparis on of solar radiation calculated by the three techniques.
the USU measurement site. The earlier sunset and later sunrise used in technique 2, compared with those observed in technique 3, reflects the greater degree of topographic obstruction at Spawn Creek. If sunset and sunrise times in technique 2 were set equal to those observed in technique 3 a better correspondence would be expected between these two approaches.

Vegetative radiation
Long-wave radiation emitted by the forest canopy was not accounted for in the current version of DSTEMP. Pluhowski (1970) proposed applying Stefan-Boltzmann's law to the problem of estimating incident and reflected vegetative radiation at the stream surface. Written directly in the form of Equation 3.31, Pluhowski's approach was:

$$
\begin{align*}
& \phi_{\mathrm{v}}=\epsilon \sigma\left(\mathrm{T}_{\mathrm{a}}+459.67\right)^{4} \cdot \cdot \cdot \cdot \cdot \cdot \cdot  \tag{3.61}\\
& \phi_{\mathrm{vr}}=\mathrm{R}_{\ell} \phi_{\mathrm{v}} \cdot \cdot \cdot \cdot \tag{3.62}
\end{align*}
$$

in which
$\epsilon$ emissivity factor for forest canopy $(\epsilon=1.0$ for solid canopy)
$\sigma \quad$ Stefan-Boltzmann constant $\left(1.74 * 10^{-9} \mathrm{BTU} \mathrm{hrs}^{-1} \mathrm{ft}^{-2}\right.$ deg. $R^{4}$ )

Ta absolute temperature of the air above the ground as an approximation to the effective leaf temperature (deg. $R$ )
$R_{\ell} \quad$ reflectivity of water surface to long-wave radiation $\left(R_{\ell}=0.03\right.$ according to Harbeck, 1958)

This component would probably be important in subreaches flowing through densely forested areas.

## Atmospheric radiation

Anderson (1954) proposed the following empirical relationship for incident long-wave atmospheric radiation flux:

$$
\begin{equation*}
\phi_{a}=\beta \in \sigma\left(\mathrm{T}_{\mathrm{a}}+459.67\right)^{4} \cdot . . \cdot . \quad . \tag{3.63}
\end{equation*}
$$

in which
$\beta$ atmospheric radiation factor (dimensionless)
$\epsilon \quad$ emissivity of the atmosphere ( $\epsilon=1.0$ )
Based on a statistical analysis of Anderson's results and on later work by Burt (1958), Raphael (1962) developed Figure 3.8 in which $\beta$ was represented as a function of vapor pressure and cloud cover:

$$
\begin{equation*}
\beta=A A(C)+B B(C) e_{a} \cdot \quad . \quad . \quad . \quad . \quad . \tag{3.64}
\end{equation*}
$$

in which
C cloud cover in an integer number of tenths of cover
$\mathrm{A} A(\mathrm{C}), \mathrm{BB}(\mathrm{C})$ empirical coefficients in Equation 3.64 with different values for $C=0,10$. The values used in


Figure 3.8. Atmospheric radiation factor, $\beta$ (after Raphael, 1962).
$A A(C)$ and $B B(C)$ were taken from Novotny and Krenkel (1971) and are contained in the input description for read statements 32 and 33 in the DSTEMP input description (Appendix A)
${ }^{e}$ vapor pressure of air (ins. Hg )

Vapor pressure of air was calculated using a modified version of the Magnus-Tetens formula (Kleinschmidt, 1935):

$$
\begin{equation*}
e_{a}=\exp \left[\frac{8.642 \mathrm{~T}_{\mathrm{d}}-683.0}{0.5556 \mathrm{~T}_{\mathrm{d}}+219.5}\right] \quad . \quad . \tag{3.65}
\end{equation*}
$$

in which
$\mathrm{T}_{\mathrm{d}}$ dew point temperature (deg. F )
Long-wave atmospheric radiation flux reflected at the stream surface was estimated by:

$$
\begin{equation*}
\phi_{a r}=R_{\ell} \phi_{a} \tag{3.66}
\end{equation*}
$$

Back radiation
Countering the incoming fluxes of heat from the sun, atmosphere, and forest is the long-wave radiation emitted by the stream itself. Long-wave back radiation from the stream was computed by a piece-wise-linear approximation to Stefan-Boltzmann's law with an emissivity factor for water of $\epsilon=0.97$ (Anderson, 1954):

$$
\begin{equation*}
\phi_{b}=B 1(T)+B 2(T) T \quad . \quad . \quad . \quad . \quad . \quad . \tag{3.67}
\end{equation*}
$$

in which

T stream temperature (deg. F)
$\mathrm{Bl}(\mathrm{T}), \mathrm{B} 2(\mathrm{~T})$ coefficients in the piecewise-linear approximation to Stefan-Boltzmann's law depending on stream temperature range:

T	B1	B2
$32-68$	68.27	0.8815
$68-104$	54.25	1.084

Latent heat of vaporization associated with evaporation

Many empirical formulas are available for estimating evaporation from water bodies (Wunderlich, 1972). Each of these formulas involves coefficients that should be estimated from field experiments. A generalized version of the empirical evaporation equation was adapted for use in DSTEMP. Latent heat of vaporization removed from the stream by the evaporating water mass was estimated by:

$$
\begin{equation*}
\phi_{e}=\rho L_{v} N u\left(e_{s}-e_{a}\right) \quad \cdot \quad \cdot \quad . \tag{3.68}
\end{equation*}
$$

in which
$\rho \quad$ density of water (62.3 lbs. $\left.\mathrm{ft}^{-3}\right)$
$L_{V}$ latent heat of vaporization of water (1053 BTU 1bs ${ }^{-1}$ )
$\mathrm{N} \quad$ mass transfer coefficient (evaluated by field experiment
u wind speed (mph)
or during model calibration procedure) (ins. $\mathrm{Hg}^{-1}$ )
$e_{s} \quad$ saturation vapor pressure of air (ins. Hg )
$\mathrm{e}_{\mathrm{a}}$ vapor pressure of air (ins. Hg)
Saturation vapor pressure of air was calculated by a piecewise-linear approximation (Wunderlich, 1972) to the Magnus-Tetens formula (Equation 3.65) in which $T$ was substituted for $T_{d}$ ©

$$
\begin{equation*}
e_{S}=\operatorname{ESl}(T)+\operatorname{ES} 2(T) T \tag{3.69}
\end{equation*}
$$

in which

ESl(T), ES2(T) coefficients in the piecewise-linear approximation to Magnus-Tetens formula depending on stream temperature range. Values used for ESl(T) and ES2(T) are listed in the input description for read statements 35 and 36 in the DSTEMP input description (Appendix A).

Conduction
Bowen (1926) related heat losses to the air by conduction across a water surface, to latent heat of vaporization associated with evaporation from the water surface:

$$
\begin{equation*}
R=\frac{\phi_{c}}{\phi_{e}}=6.49\left[\frac{T-T_{a}}{e_{s}-e_{a}}\right] \frac{P}{P_{o}} \quad . \quad . \tag{3.70}
\end{equation*}
$$

in which

R Bowen's ratio (a dimensionless constant, see Bowen, 1926)
$P \quad$ atmospheric pressure at study area (ins. Hg )
$P_{o} \quad$ atmospheric pressure at sea level
Heat losses by conduction were estimated by substituting Equation 3.68 and $P_{o}=29.92$ ins. Hg into Equation 3.70 and then solving for $\phi_{c}$ :

$$
\begin{equation*}
\phi_{\mathrm{c}}=0.217\left(\mathrm{~T}-\mathrm{T}_{\mathrm{a}}\right) \mathrm{P}_{\rho} \mathrm{L}_{\mathrm{v}} \mathrm{Nu} \quad . \quad . \quad . \quad . \tag{3.71}
\end{equation*}
$$

Latent heat of fusion associated
with snowfall
The current version of DSTEMP does not include an estimation of the latent heat of fusion and other heat required to convert snow falling into the stream to water. Adapting an approach used by Jeppson (1975) the heat lost by the stream in melting snow is given by:

$$
\begin{equation*}
\phi_{\mathrm{sn}}=\mathrm{q}_{\mathrm{sn}} \rho\left[\mathrm{~L}_{\mathrm{f}}+\mathrm{C}_{\mathrm{sn}}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{r}}\right)\right] \cdot \tag{3.72}
\end{equation*}
$$

in which
$q_{s n}$ snow (ft. $s^{-1}$ )
$L_{f} \quad$ latent heat of fusion (143.5 BTU lbs $^{-1}$ )
$\mathrm{C}_{\text {Sn }}$ specific heat of ice ( $0.50 \mathrm{BTU} \mathrm{lbs}{ }^{-1}$ deg. $\mathrm{F}^{-1}$ )

## Surface layer renewal

Heat supply or removal by surface renewal was also omitted from the current version of DSTEMP. It could be represented using an approach proposed by Novotny and Krenkel (1971):

$$
\begin{align*}
& \phi_{W}=k_{W}\left(T_{S}-T\right) \quad \cdot \quad \cdot \quad \cdot \quad \cdot  \tag{3.73}\\
& k_{W} \simeq 3.96 \times 10^{4} \mathrm{k}\left(\frac{\mathrm{U}}{\mathrm{H}}\right)^{0.33} \quad . \tag{3.74}
\end{align*}
$$

in which
$\mathrm{T}_{\mathrm{s}} \quad$ surface water temperature (deg. F )
$\mathrm{k} \quad$ coefficient of thermal conductivity ( $\mathrm{BTU} \mathrm{ft}^{-1} \mathrm{~s}^{-1} \mathrm{deg}, \mathrm{F}^{-1}$ )
U velocity of stream (ft. $\mathrm{s}^{-1}$ )
H depth of flow (ft.)
To calculate $\phi_{W}$ an estimate of $T_{S}$ is required. Novotny and Krenkel (1971) proposed a technique for calculating $\mathrm{T}_{\mathrm{S}}$ from T , the bulk water temperature, by applying a heat balance at the air-water interface. If $T_{s}$ is estimated it should also be used in place of $T$ in the estimation of $\phi_{b}$ (Equation 3.67), $\phi_{e}$ (Equation 3.68), and $\phi_{c}$ (Equation 3.70).

Solar radiation absorbed by streambed

After reflection at the stream surface the remainder of the incident solar radiation flux enters the stream. Approximately 60
percent of the solar radiation (Novotny and Krenkel, 1971) entering the stream is immediately absorbed in the water surface (Figure 3.9). Within the stream solar radiation is absorbed in an exponential manner which can be described fairly well by Beer's law. Thus the solar radiation flux absorbed by the streambed was estimated by:

$$
\begin{equation*}
\phi_{b s}=\left(1-R_{b}\right)(1-s)\left(\phi_{s}-\phi_{s r}\right) \exp (-\eta H) \tag{3.75}
\end{equation*}
$$

in which
$R_{b} \quad$ reflectivity of streambed (found experimentally or in calibration procedure) (dimensionless)
s proportion of solar radiation entering stream that is absorbed in the water surface (usually 0.6)
$\eta$ bulk extinction coefficient (mean value for solar radiation $0.008 \mathrm{ft}^{-1}$, Roesner, 1969) ( $\mathrm{ft}^{-1}$ )

Back radiation from streambed
This component was not modeled in the current version of DSTEMP. If an emissivity of the streambed could be established then it is proposed that the Stefan-Boltzmann's law could be applied based on the temperature of the streambed-stream interface.

## Conductive flux across streambed

In Comer et al. (1975) a regression relationship was developed to predict conductive fluxacross the streambed of Spawn Creek based on

Figure 3.9. Dissipation of incident solar radiation flux.
experimental data:

$$
\begin{equation*}
\phi_{b c}=\alpha_{1}+\alpha_{2} \phi_{b s}+\alpha_{3} \mathrm{~T}_{\mathrm{g}}+\alpha_{4} \mathrm{~T} \cdot . \tag{3.76}
\end{equation*}
$$

in which
$\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$
regression coefficients
T
groundwater temperature (deg. F)

CHAPTER 4<br>APPLICATION OF DSTEMP TO<br>BRAZOS-LITTLE RIVERS, TEXAS<br>Introduction

A search was made for a river system on which to demonstrate the Dynamic Stream Temperature Model (DSTEMP) and its linkage to the Implicit Dynamic Routing Program (DNRT). The following criteria were selected for the river system:

1) A river-tributary system is preferred to a single river
2) Streamflow and stream temperature data should be available at the upstream boundaries of the main river and tributary and at the downstream boundary of the main river
3) Streamflow at the upstream boundaries of the river system should contribute the major portion of the streamflow at the downstream boundary and therefore lateral inflow is small
4) No reservoirs between upstream and downstream boundaries
5) No major sources of thermal pollution or streamflowfor which records do not exist

The third criterion was established because streamflow-stream temperature modeling in a river system with large lateral inflow becomes mainly a problem of estimating lateral inflow rates and lateral inflow temperatures. In the absence of these lateral inflow data they should be estimated using a two-dimensional hydrology-water temperature model applied to the catchment areas of the river system. At present, such a
model does not exist for water temperature. In order that the predictions from DSTEMP should not be dominated by lateral inflow temperature estimates a river system with small lateral inflow was sought such that hydrograph-thermograph routing and meteorologic considerations were the most important aspects of the stream temperature simulation.

After an extensive search with the assistance of the Chief, Branch of Quality of Water, USGS, and several USGS District Chiefs, the BrazosLittle Rivers in Texas were found to closely satisfy the criteria listed above. In the remainder of this chapter the data collection, streamflow modeling, DSTEMP problem set-up, and results of the Brazos-Little application are described.

## Brazos-Little River System

The section of the Brazos-Little River System modeled in this study was bounded by USGS streamflow gages at Highbank, Cameron, and College Station (Figure 4.1). Stream temperature records were available at the Highbank and Cameron gages but not at College Station. Therefore, stream temperature records from the Bryan gage, 9 miles downstream, were used for comparison with stream temperatures predicted by the DSTEMP model at college stations. On the basis of channel characteristics the 65.5 mile section of the Brazos River was divided into 13 subreaches, and the 33.6 mile section of the Little River was dividedinto 8 subreaches. At the confluence of the rivers an arbitrarily small subreach was


Figure 4.1. Schematic of Brazos-Little River System.
defined on the Brazos River for addition of the Little River treated as lateral inflow over the small subreach.

## Data Sources

Several storms during the 1973 water year were selected for possible simulation. Streamflow and stream temperature data were obtained from the USGS Surface Water Records and Water Quality Records. Topographic quadrangle maps, and rating curves and crosssections for the gaging stations were furnished by the USGS, Austin, Texas.

Meteorologic data were taken from Local Climatic Data published by NOAA. Additional unpublished meteorologic data for College Station were supplied on microfilm from the National Climatic Center, Asheville, North Carolina. Solar radiation data observed at College Station were made available by the Texas State Climatologist.

## Streamflow Modeling

Data preparation for application of DNRT to the Brazos-Little Rivers was undertaken jointly by the contractors (Utah Water Research Laboratory) and the client (Hydrologic Research Laboratory, National Weather Service, NOAA). Final calibration of DNRT for unsteady flow conditions was accomplished by D. L. Fread of NOAA. Output from the calibrated DNRT model was written onto computer disc storage files at Utah State University, and then read as input by the DSTEMP model.

## DSTEMP Problem Set-Up

A partial listing of DSTEMP model input is contained in Figure 4.2. The listing was obtained using the print option, IPRT $=1$, which excludes hydraulic and stream geometry data generated by DNR T. All components of surface heat transfer available in the current version of DSTEMP were used, but streambed heat transfer components were considered negligible. Solar radiation was calculated using the third technique ( $\operatorname{ITECH}=3$ ). A 12 hour computational time increment was used.

Surface and subsurface components of lateral inflow were lumped together and no point sources of thermal effluents were represented. Initial temperatures along the river system were estimated by linear interpolation between the upstream and downstream boundaries while maintaining a heat balance at the confluence of the two rivers. Comparison of observed and predicted stream temperatures was possible at only one location, the downstream boundary.

Standard values of the various meteorologic coefficients listed in Appendix A were used in this application. Three meteorologic data groups were defined:

1) Brazos River, subreaches 1-7: using precipitation and dry bulb air temperatures observed at Highbank and other meteorologic data from Waco.
2) Little River, subreaches 1-8: using precipitation and dry bulb air temperatures observed at Cameron and other meteorologic data from Waco.
LISTIAGEFごが


[^2]


3) Brazos River, subreaches 9-13: using meteorologic data observed at College Station

Observed solar radiation data at College Station were used in all the meteorologic data groups. These data were adjusted for an instrument bias by adding $20 \%$ to the reported value. All meteorologic data were input for a meteorologic time interval of 24 hours except solar radiation data which were input for the 12 hour computational time intervals.

## Results

Figures 4.3a and c show the upstream streamflow boundary conditions for the dynamic routing model, DNRT, for the period of December 5-28, 1972. A comparison of the observed and predicted hydrographs at the downstream boundary is represented by Figure 4.3 e . This figure indicates that very good agreement was achieved between model responses and observed flows.

The strategy for calibration of DSTEMP was as follows:

1) Adjust coefficients affecting surface heat transfer components
2) Adjust estimate of lateral inflow thermograph

During the early stage of model calibration the first technique (ITECH=1) for calculating solar radiation was used. However, a comparison of solar radiation predicted by this technique with values observed at College Station indicated that low values were generally over-estimated and that high values were generally under-estimated. It was not feasible to draw any conclusions about the technique for estimating solar radiation


Hydrographs and thermographs at upstream and downstream boundaries of Brazos-Little River System including model predictions (December 5-28, 1972).
Figure 4.3.
based on these results since the instrument with which solar radiation ${ }^{97}$ data were observed was known to be out of adjustment (Griffiths, 1975, personal communication). However, because the predicted stream temperature reflected the apparent discrepancies in the solar radiation predictions it was decided to use the observed solar radiation data adjusted for instrument bias (i.e. ITECH=3).

The USGS at Austin, Texas, estimated shading on the Brazos River to be $5 \%$ and on the Little River to be $25 \%$. These values were reduced to $0 \%$ and $15 \%$ respectively for winter conditions.

Heat transfer by evaporation and conduction across the stream surface are directly proportional to the mass transfer coefficient, N (see Equations 3.68 and 3.71). A value of $\mathrm{N}=0.00005$ ins. $\mathrm{Hg}^{-1}$ was found to yield reasonable values of evaporation and conduction.

During the storm period the lateral inflow thermograph was considered to be highly dependent on air temperature. Therefore a lateral inflow thermograph (Figure 4.4) was assumed based on the variation in air temperature.

The following factors should be considered when evaluating the adequacy of the simulation results:

1) Thermographs used by the USGS are rated by the manufacturer as accurate to within $2^{\circ} \mathrm{F}$ (Rawson, 1970)
2) Observed stream temperatures used in this study were based on instantaneous values selected randomly within 24 hour intervals on the continuous thermograph trace. In contrast, model predictions were for time points spaced twelve hours apart. Therefore, a comparison between a predicted and an observed mean temperature may be a comparison between temperatures with up to 24 hours difference in occurrence.

## LEGEND

- Mean daily dry-bulb air temperature based on the three meteorologic data groups.
—— Assumed lateral inflow temperature


Figure 4.4. Assumed lateral inflow thermograph.
3) DSTEMP predicts stream temperatures that are average for the stream cross-section, whereas observed stream temperatures are measured at single locations in the cross-section.
4) The observed thermograph in this study was located 9 miles downstream of the point at which stream temperatures were predicted.

Upstream boundary conditions for stream temperature are shown in Figures 4.3 b and d . Observed and predicted thermographs at the downstream boundary are represented by Figure 4.3 . A trough in the predicted thermograph coincides with the peak of the hydrograph (Figure 4.3 e ) at day 12 but misses the trough in the observed thermograph by one day. Predicted temperatures after day 16 are generally low compared with observed temperatures. Overall agreement is quite good with a correlation coefficient, $\mathrm{R}^{2}$, equal to $84 \%$.

## CHAPTER 5

CONCLUSIONS AND FUR THER WORK

A Dynamic Stream Temperature Model (DSTEMP) has been developed and tested. The current version of DSTEMP is suitable for application in temperature simulations on small streams or large river systems. This versatility is enhanced by the capability of substituting different methods of calculating heat transfer components, or suppressing components that are unimportant on certain streams. Thus process studies such as those performed on Spawn Creek (Comer, et al., 1975) can be handled by DSTEMP. Also, the simulation of stream temperature regimes in large river systems is facilitated by the meteorologic data group concept described in Chapter 3 and Appendix A. Dynamic aspects of the flow and temperature representation by DNR T-DSTEMP are essential to obtain predictions of critical, but transient, stream temperature conditions that may endanger aquatic environment.

Although the current versions of DNR T-DSTEMP offer a very flexible tool for dynamic simulation of streamflow - stream temperature there remain some areas of further work. Suggestions for further work on DNRT and DSTEMP are listed below:

## DNRT

1) Distinguish between surface and subsurface lateral inflow contributions. Could be achieved through linkage to a twodimensional hydrology model.
2) Add capability for handling point loads.

## DSTEMP

1) Generate thermographsfor lateral inflows by linkage with a two-dimensional hydrology -- water temperature model. At present the estimation of these thermographs is mainly the result of intuitive guesses and trial-and-error matching of observed and predicted thermographs after the nonadvective heat transfer processes are calibrated.
2) Add frictional heat flux and those components of heat exchange ommitted from the current version.
3) Add to the solar radiation subroutine, for ITECH $=1$, an algorithm for calculating the variation of snow albedo with the age of snowpack adjacent to the stream.
4) Input cloud type and vary coefficients in Equation 3.54 as described by Anderson (1954).
5) Allow for computational time intervals different to the data time interval by interpolating between input data (does not apply to meteorologic data).
6) Calculate statistics to summarize model performances based on observed stream temperatures.
7) Plot predicted and observed stream temperatures to assist in model calibration or evaluation of model predictions.
8) Include an ice formation and melt algorithm to extend the temperature range over which the model is applicable.
9) Add a reservoir algorithm.
10) Complete the option to use S.I. units.
11) Apply estimation theory to the real time stream temperature forecasting problem. This will facilitate "updating" as data become available. It could also be used to provide "best" estimates of lateral inflow temperatures.

It is considered that the addition of the above features to the DNR TDSTEMP models will further enhance their practical value to river forecasters.

## REFERENCES

Albertson, O. L., B. A. Tichenor, J. Seaders, and F. J. Burgess. 1974. Stream temperature prediction by digital computer techniques. Department of Civil Engineering, Oregon State University, Corvallis, Oregon. 27 p.

Amein, M., and C. S. Fang. 1970. Implicit flood routing in natural channels. Journal of the Hydraulics Division, ASCE, 96(HY 12): 2481-2500. December.

Anderson, E. R. 1954. Energy-budget studies, water loss investigations: Lake Hefner studies. SCS Professional Paper 269.

Bolsenga, S. T. 1964. Daily suns of global radiation for cloudless skies. Technical Report No. 160. U.S. Army Material Command, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire. November.

Bowen, I. S. 1926. The ratio of heat losses by conduction and by evaporation from any water surface. Physical Review, 27:779787. July.

Bowles, D. S., J. P. Riley, and G. B. Shih. 1975. An application of the Utah State University Watershed Simulation Model to the Entiat Experimental Watershed, Washington State. Final report to Pacific Northwest Forest and Range Experiment Station, United States Forest Service.

Brown, G. W. 1969. Predicting temperature in small streams. Water , Resources Research 5:68-75.

Brown, G. W. 1970. Predicting the effect of clearcutting on stream temperature. J. Soil and Water Conserv. 25:11-13.

Brown, G. W. 1972. An improved temperature prediction model for small streams. Oregon State University, Water Resources Research Institute, WRRI-16.

Burt, W. V. 1958. Heat budget terms for Middle Snake River Reservoirs. Technical Report No. 6, Reference 58-7. School of Science, Oregon State College, Corvallis, Oregon. December.

Buttner. 1953. Linke's Meteorologisches Taschenbuch, Volume 2. Geest and Portig K. G., Leipzig.

Comer, L. E., D. S. Bowles, and W. J. Grenney. 1975. Field investigations and mathematical model for heat transfer processes in the bed of a small stream. Utah Water Research Laboratory, College of Engineering, Utah State University, Logan, Utah 84322. 103 p.

Dailey, J. E., and D. R. F. Harleman. 1972. Numerical model for the prediction of transient water quality in estuary networks. Ralph M. Parsons Laboratory for Water Resources and Hydrodynamics, Report No. 158, Department of Civil Engineering, M.I.T. October.

Dake, J. M. K., and D. R. F. Harleman. 1969. Thermal stratification in lakes: analytical and laboratory studies. Water Resources Research 5(2):484-495. April.

Dingman, S. L., and A. Assur. 1967. The effect of thermal pollution on river--ice conditions--Part 1. United States Army Cold Regions Research and Engineering Laboratory, Hanover, N.H. December.

Edinger, J. E., D. W. Duttweiler, and J. C. Geyer. 1968. The response of water temperatures to meteorological conditions. Water Resources Research, 4(5):1137-1143. October.

Edinger, J. E., and J. C. Geyer. 1965. Heat exchange in the environment. EEI Publication No. 65-902, Edis on Electric Institute, New York, New York. 259 p.

Fischer, H. B. 1973. Longitudinal dispersion and turbulent mixing in open-channel flow. In: Annual review of fluid mechanics. Annual Reviews Inc., Palo Alto, California. p. 59-78.

Fread, D. L. 1973. Technique for implicit dynamic routing in rivers with tributaries. Water Resources Research 9(4):918-926. August.

Fread, D. L. 1974. Implicit dynamic routing of floods and surges in the Lower Mississippi. Presented at the American Geophysical Union Spring National Meeting in Washington, D. C. April 8-12. p. 26 .

Harbeck, G. E. 1958. Water loss investigations: Lake Mead Studies. USGS Professional Paper 298.

Harleman, D. R. F., D. N. Borcard, and T. O. Majarian. 1973. A predictive model for transient temperature distributions in unsteady flows. Ralph M. Parsons Laboratory for Water Resources and Hydrodynamics, Report No. 175, Department of Civil Engineering, M.I. T. November.

Harper, Martin E. 1972. Development and application of a multiparametric mathematical model of water quality. Doctor of Philosophy Dissertation, University of Washington.

Jeppson, R. W. 1975. Prediction of stream temperature and rate of ice formation. Unpublished manuscript.

Jobson, H. E., and N. Yotsukura. 1973. Mechanics of heat transfer in nonstratified open-channel flows. Chapter 8 in Environmental impact on rivers (River Mechanics Vol. III). Edited by H. W. Shen. Water Resource Publications, Fort Collins, Colorado. 680 p.

Kimball, H. H. 1927, 1928, 1930. Measurements of solar radiation intensity and determination of its depletion by the atmosphere. Monthly Weather Review, Volumes 55, 56, and 58.

Kleinschmidt, E. 1935. Handbuch der Meteorologischen Instrumente. Springer, Berlin. p. 201.

List, R. T. 1963. Smithsonian Meteorologic Tables (6th Edition) Smithsonian Institution, Washington, D. C.

McKee, J. E., and H. W. Wolf. 1963. Water quality criteria. Second Edition, Sacramento, Calif. 548 p.

Morse, W. L. 1970. Stream temperature prediction model. Water Resources Research, 6(1):290-302. February.

Morse, W. L. 1972a. Stream temperature prediction under reduced flow. Proc. ASCE, Journal of Hydraulics Division, 98 (HY6): 1031-1047. June.

Morse, W. L. 1972b. Stochastic stream temperature model. In Proc. International Symposium on Uncertainties in Hydrologic and Water Resource Systems, Tucson, Arizona. pp. 324-339. Dec. 1l-14.

Novotny, V., and P. A. Krenkel. 1971. Heat transfer in flowing streams. Report No. 7, Department of Environmental and Water Resources Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee. September.

Pailey, P. P., E. O. Macagno, and J. F. Kennedy. 1974. Winterregime thermal response of heated streams. Journal of the Hydraulics Division, Proc. ASCE 100(HY4):531-550. April.

Parker, F. L., and P.A. Krenkel. 1969. Engineering aspects of thermal pollution. Vanderbilt University Press. 340 p.

Pivovarov, A. A. 1973. Thermal conditions in freezing lakes and rivers. The Is raeli Program for Scientific Translation. Jerusalem. (Russian edition, 1972). 136 p.

Pluhowski, E. J. 1970. Urbanization and its effect on the temperature of the streams on Long Island, New York. USGS Professional Paper 627-D. 110 p.

Raphael, J. M. 1962. Prediction of temperature in rivers and reservoirs. Journal of the Power Division, ASCE, 88(PO2):157-181. July.

Rawson, J. 1970. Reconnaissance of water temperature of selected streams in southeastern Texas. Report 105, Texas Water Development Board. p. 2.

Roesner, L. A. 1969. Mathematical models for the net heat rate of heat transfer through the air-water interface of a flowing stream. Ph. D. dissertation, University of Washington.

Texas Water Development Board. 1971. Simulation of water quality in streams and canals. Texas Water Development Board, report 128.

Timofeyev, M. P., and S. P. Malevskiy-Malevich. 1967. Patterns of thermal regime of the surface layer of water. In Soviet Hydrology: Selected Papers 1967. No. l, 102.

Sutton, G. O. 1953. Micrometeorology. McGraw Hill, New York, New York. 333 p.

Viskanta, R., and J. S. Toor. 1972. Radiant energy transfer in waters. Water Resources Research 8(3):595-608. June.

Vugts, H. F. 1974. Calculation of temperature variations of small mountain streams. Journal of Hydrology, 23:267-278.

Wunderlich, W. O. 1968. The water temperature regime of fullymixed streams. Report No. 15 (preliminary), Tennessee Valley Authority, Water Resources Research Laboratory, Norris, Tennessee. 64 p .

Wunderlich, W. O. 1972. Heat and mass transfer between a water surface and the atmosphere. Report No. 14, Tennessee Valley Authority, Water Resources Research Laboratory, Norris, Tennessee. 173 p. April.

## APPENDIX A <br> Users Manual for Dynamic Stream Temperature Model (DSTEMP)

Page

1. Overall flow chart . ..... 109
2. Input data and decision parameter description ..... 110
3. Program listing ..... 133
4. Examples of input and output
a. Main stream only ..... 143
b. Main stream and one tributary ..... 146

5. Input Data and Decision Parameters for Dynamic

Stream Temperature Model (DSTEMP)
Notes

1. Input data and decision parameters for DSTEMP are divided into six groups:

I Initial parameter
II Hydraulic and stream geometry data
III General input
IV Flows and water temperatures
V Observed thermographs
VI Meteorologic data and coefficients
2. Computer mnemonics are defined at their first appearance in a read statement. Three important subscripts used are:

I Computational point or sub-reach index
J Time point or time interval index
K Stream index
3. Each 80 column input record contains a 10 character card identification followed by seven 10 character data fields. Each read statement described below commences with a four character code defining the card type. Columns 5 to 10 may be used for identifiers such as the indicies $I, J$, and $K$, and card sequence numbers.
4. The beginning and end of DO-loops are indicated by notes in parenthesis immediately before and after the first and last read statements respectively, in DO-loops.
5. Units for the variables to be read are included in the following descriptions of input data. The units are those used by the National Weather Service and United States Geological Survey in published data which are likely to be used in applications of DSTEMP. In an attempt to allow for a future option in which S. I. units will be used, coefficients, physical constants and headings in which units are printed are all read as input. When the S.I. option is introduced S.I. equivalents will be substituted for the British units used at present.
6. When all seven data fields are used on the last card read in a read statement, a blank card must be placed after that card. This measure is necessary because of a limitation in the structure of the FORTRAN read formats.
7. "b" indicates a blank column in the card identification field.
$\frac{\text { Initial Parameters }}{\text { 1. "KRRb," } K R R \text {, }}$

IDTCST
IPRT
$\begin{array}{ll}I P R T=0 & \begin{array}{l}\text { All input data and decision parameters are printed (Use to provide } \\ \text { complete record at first calibration run) }\end{array} \\ I P R T=1 & \begin{array}{l}\text { All input data and decision parameters except hydraulic and } \\ \text { stream geometry data (read statements 3-13) are printed (Use } \\ \text { when removing errors from punched card input) }\end{array} \\ I P R T=2 \quad & \text { Only coefficients, parameters, and data that are varied during }\end{array}$
Only coefficients, parameters, and data that are varied during
calibration are printed (Use during calibration)
II. Hydraulic and stream geometry data (transferred from DNRT or directly input to DSTEMP)
2. "NTNS, " NT, NS - Format (Al0, 2Il0)
rmat (Al0, 2Il0)
Card type identification
Number of time points (equals number of time intervals plus one)
Number of streams
$\begin{aligned} & N S=1 \quad \text { Main stream only } \\ & N S=2 \quad \text { Main stream and } 1 \text { tributary, etc. }\end{aligned}$
Input option for constant time step (Applies to read statement 3 - if transfering data from DNRT then set IDTCST = 0)

$$
\operatorname{IDTCST}=0 \quad \text { time step varies - read a value for each time interval } D T(J)
$$

 Print option for selective output of input data and decision parameters

IPRI =
ormat (Al0, 2Il0)
Card type identification
Number of time points (equals number of time intervals plus one)
Number of streams
$\begin{aligned} & \text { NS }=1 \quad \text { Main stream only } \\ & N S=2 \quad \text { Main stream and } 1 \text { tributary, etc. }\end{aligned}$
> $\mathrm{NS}=2$
3. "DTbb", (DT(J), J = 1, NTI) - Format (A10, 7F10.0/(10X, 7F10.0))
 $\begin{array}{ll}\text { "NJUN" } & \text { Card type identification } \\ \text { NJUN(K) } & \begin{array}{l}\text { Number of main stream reach over which Kth tributary } \\ \text { enters main stream }\end{array}\end{array}$

$$
\text { (Read statements } 6 \text { to } 12 \text { are read for one stream (K subscript) at a time) }
$$

$$
\text { 6. "Xbbb", (X(I, K), I = 1, NX)-Format (A10, } 7 \text { F10.0/(10X, } 7 \text { F10.0)) }
$$

Card type identification

## Computational point or sub-reach index

 "Xbbb"I

X (I, K)	River distance in miles at the Ith computationsl point
NX	NB (K)
, (DDX $\mathrm{I}, \mathrm{K}), \mathrm{I}=1, \mathrm{NX} 1)$ - Format (A10, 7F10.0/(10X, 7F10.0))	
"DDXb"	Card type identification
DDX (I, K)	Length in feet of Ith sub-reach between Ith and (I+1)th computational points
NX 1	Number of sub-reaches $=\mathrm{NB}(\mathrm{K})-1$

(Read statements 8 to 12 are read for one time point (J subscript) at a time. A total of NTI time points are read: NTI = NT if IOSS = 0, NTI = 1 if IOSS = 1)
8. ${ }^{\prime C S A b} ",(\operatorname{CSA}(\mathrm{I}, \mathrm{J}, \mathrm{K}), \mathrm{I}=1, \mathrm{NX})-\operatorname{Format}(\mathrm{A} 10,7 \mathrm{~F} 10.0 /(10 \mathrm{X}, 7 \mathrm{~F} 10.0))$

## Card type identification

CSA (I, J, K) Cross-sectional area of flow in feet ${ }^{2}$ at Ith computational point.
9. "BDbb", (BD (I, J, K), I = 1, NX) - Format (A10, 7F10.0/(10X, 7F10.0))

Card type identification
$B D(I, J, K)$ Top width of flow in feet at Ith computational point
10. "PMbb", (PM(I, J, K), $I=1, N X)$ - Format (A10, 7F10.0/(10X, 7F10.0))
Card type identification
PM(I, J, K) Wetted perimeter in feet at Ith computational point
11. "QSbb", (QS(I, J, K), $I=1, N X)-\operatorname{Format}(A 10,7 F 10.0 /(10 X, 7 \mathrm{Fl} 0.0))$
Card type identification
QS(I, J, K) Streamflow rate in cfs at Ith computational point
12. "ELVT", (ELVTN(I, J, K), $I=1, N X)$ - Format (A10, 7F10.0/(10X, 7F10.0))
"ELVT" Card type identification

Card type identification "QLbb"'
(End of J - and K - loops)
15. (UNIT(L), L = 1, 30) - Format (20A4/10A4)

Component
Incident and reflected solar radiation at stream surface
Incident and reflected long wave radiation from adjacent vegetation at stream surface ${ }^{1}$
Incident and reflected atmospheric radiation at stream surface
Back radiation from stream
Latent heat of vaporization associated with evaporation from stream surface

> Conduction across stream surface
Latent heat of fusion associated with snow falling on stream ${ }^{1}$
Surface renewal losses ${ }^{1}$

This component is not modeled in the current version of DSTEMP -
set IOHTC(IC) $=0$
17. "PROP", RHO, CP, FLHV, FLHF, ATREF, ATEN, SURABS, SOLREF - Format
Card type identification (Properties of water)
Density of water (62.317 1bs. ft. ${ }^{-3}$ )
CP
ヘHTE
SOLREF
"TIME", IDAY2,
"TIME"
IDAY 2
FHR 2
FLAT
DTSL
$\stackrel{\infty}{-}$

$$
\text { Specific heat of water at constant pressure ( } 0.9988 \text { Btu. Ibs. }{ }^{-1} \text { deg. } \mathrm{F}^{-1} \text { ) }
$$

$$
\text { Latent heat of vaporization of water ( } 1053 \text { Btu. } 1 \mathrm{bs} .^{-1} \text { ) }
$$

$$
\text { Latent heat of fusion of water ( } \left.143.5 \text { Btu. } \overline{\mathrm{lbs} .^{-1}}\right)
$$

$$
\begin{aligned}
& \text { Proportion of incident atmospheric radiation reflected at water } \\
& \text { surface (usually } 0.03 \text { ) } \\
& \text { Bulk extinction coefficient (Equation } 3.75 \text { ) for attenuation of solar radiation } \\
& \text { transmitted through stream depth (usually } 0.015 \mathrm{ft.}^{-1} \text { ) } \\
& \text { Proportion of solar radiation entering water surface that is immediately } \\
& \text { absorbed (usually } 0.6 \text { ) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Proportion of incident solar radiation reflected at water surface (can leave } \\
& \text { blank if ITECH =1). } \\
& \text { FHR2, FLAT, DTSL, FHSR, FHSS - Format (A10, Il0, } 5 \text { F10.0) }
\end{aligned}
$$

Card type identification Time in hours measured from midnight of DT(1), the first time point. Daylight

$$
\begin{aligned}
& \text { Day number counting from January lst of } D T(1) \text {, the first time point } \\
& \text { Time in hours measured from midnight of DT(1), the first time point. Daylioht }
\end{aligned}
$$ saving time should be corrected to standard time if ITECH $=1$

Latitude in degrees of streams to be modeled (can leave blank if ITECH $\neq 1$ )
Time difference between local and standard meridian in hours (can leave blank if ITECH $\neq 1$ ) Computed by: DTSL $=\frac{\mathrm{e}}{15}(\mathrm{LSM}-\mathrm{LLM})$ in which
$\begin{array}{ll}\text { LSM } & \begin{array}{l}\text { longitude of standard meridian in degrees from Greenwich } \\ \left(75^{\circ} \mathrm{W}\right. \\ \\ \text { LLM Eastern Standard Time) }\end{array} \\ \text { longitude of local meridian in degrees from Greenwich }\end{array}$
$\begin{array}{ll}\text { LSM } & \text { longitude of standard meridian in degrees from Greenwich } \\ & \left(75^{\circ} \mathrm{W} \text { for Eastern Standard Time) }\right. \\ \text { LLM } & \text { longitude of local meridian in degrees from Greenwich }\end{array}$
$\begin{array}{ll}\text { LSM } & \text { longitude of standard meridian in degrees from Greenwich } \\ & \left(75^{\circ} \mathrm{W} \text { for Eastern Standard Time) }\right. \\ \text { LLM } & \text { longitude of local meridian in degrees from Greenwich }\end{array}$
for west longitude


$\begin{array}{ll}\text { LSM } & \text { longitude of standard meridian in degrees from Greenwich } \\ & \left(75^{\circ} \mathrm{W} \text { for Eastern Standard Time) }\right. \\ \text { LLM } & \text { longitude of local meridian in degrees from Greenwich }\end{array}$
$\begin{array}{cc}-1 & + \\ 11 \\ 0 & 11 \\ 0 & 0\end{array}$
Standard time of sunrise in hours measured from midnight (can leave blank if ITECH $\neq 2$ )
Standard time of sunset in hours measured from midnight (can leave blank if ITECH $\neq 2$ )
SOLCST, DSTDEP, FMTC, SIGMA, BOTREF - Format (A10, 3F10.0,
in $\stackrel{\text { 岂 }}{4}$ possibility of a weak or pseudo-instability in many cases of slowly varying tran-
sients in large rivers (Fread, 1974) ; can range 0.5-1.0) sients in large rivers (Fread, 1974); can range 0.5-1.0)

## Card type identification

 Weighting factor for implicit four-point finite difference technique (THETA = minimizes the loss of accuracy associated with greater values while avoidin Solar constant (429 Btu.ft. $\left.{ }^{-2} \mathrm{hrs.}^{-1}\right)$ ', THETA,
## FHSS

 2E10.5, Fl0.0) FHSRIV. Flows and water temperatures
$i \quad i$

"IOQT"
IOQGTG
Format (Al0, 4F10.0)

## ype identification option for reading es to read stateme IOQGTG $=0 \quad$ do IOQGTG $=1 \quad$ re

do not read $Q G(I, K)$ and $T G(I, K)$
$\begin{array}{ll}I O Q G T G=1 & \text { read } Q G(I, K) \text { (in cfs. } f_{t}{ }^{-1} \text { ) and } T G(I, K) \\ I O Q G T G=2 & \text { read } Q G(I, K) \text { (in cfs. } f t .\end{array}$
do not read TL (l, J, K)
read $T L(1, J, K)$ and set $(T L(I, J, K), I=2, N X 1)=$
$T L(1, J, K)$ i. e., the same 'L'L vs. time data (.'background
thermograph') is to be used for each sub-reach of the Kth
stream
Number of sub-reaches in which "background thermograph" read in read statement 24 is to be overwritten. This option might be used in sub-reaches where un-modeled tributaries enter and therefore the lateral inflow thermograph would be different to the "background thermograph'read in read statement 24. (Applies to read statement 25)
NP Number of point loads to be read in.
(Read statements 22 and 23 are read if IOQGTG $=1$ and are read for one stream (K subscript) at a time)
22. "QGbb", (QG(I, K), $I=1, N X 1)$ - Format (A10, 7F10.0/(10X, 7F10.0))
"QGbb" Card type identification
Steady state value of groundwater exchange between Ith reach and groundwater body．Infiltration to the groundwater body must be given a negative sign and seepage from the groundwater body must be given a positive sign．If units of $Q G(I, K)$ are cfs．ft．${ }^{-2}$ then set
IOQGTG $=1$ and if cfs． $\mathrm{ft.}^{-1}$ then set IOQGTG $=2 .(\mathrm{in}$ read statement 21$)$.
$I=1$ NX1 $)-$ Format（A10，7F10．0／（10X，7F10．0））
Card type identification
period for which the model is run．Seeping groundwater is assumed to leave
the stream at the temperature of the stream．

（End of K－loop）
（Read statement 24 is read if IOTL $=1$ and is read for one stream（K subscript）at a time）
 first sub－reach position（ $\mathrm{I}=1$ ）in TL array and then the remaining sub－reaches
first sub－reach position（ $\mathrm{I}=1$ ）in TL array and then the remaining sub－reaches
$(\mathrm{I}=2$ ，NX1）are assigned the same thermograph values． ＂ゆ日T山＂

> Card type identification （Y‘「＇T）TL
（End of K－loop）
TG(I, K) Steady state temperature in deg. F of groundwater below Ith sub-reach and
24．＂TLBG＂，（TL（1，J，K），J＝1，NT）－Format（A10，7F10．0／（10X，7F10．0））
(Read statement 25 is read NTL times and is omitted if NTL=0)
7F10.0/(10X, 7F10.0))
2X,

## Format (A4, 2I2,

## Card type identification

Thermograph in deg. $F$ for Ith sub-reach on the Kth stream. replaces the "background thermograph" in the Ith sub-reach on the Kth stream.
These thermographs may, for example, be developed from temper atures of unmodeled tributary streams entering the main stream. For sub-reaches in which

 fore there is no need to input a thermograph for sub-reaches in which tributaries enter the main stream.
(Read statement 26 is read for one $\operatorname{stream}(K$ subscript) at a time)
26. "TSIC", (TS(I, 1, K, L), $I=1, N X)-\operatorname{Format}(A 10,7 \mathrm{~F} 10.0 /(10 \mathrm{X}, 7 \mathrm{~F} 10.0))$

## Card type identification

$\operatorname{TS}(\mathrm{I}, \mathrm{l}, \mathrm{K}, \mathrm{L})$ Initial condition $(\mathrm{J}=1)$ of stream temperature in deg. F for Ith If $N P \geq 0$ then $T S(I, 1, K, L)$ is read consecutively for
purpose of the subscript $L$ in the $T S$ array is to store temperature at computational points where point loads Because of the assumption of instantaneous and complete mixing at each stream section predicted values of stream temperature will jump at the location of a point load. $L=1$ indexes stream temperature

 load) of the computational point. At computational points where point loads do not enter the stream, the stream temperatures indexed under $L=1$ and $L=2$ are identical. If $N P=0$ then only $L=1$ values are read.
(End of K-loop)

$$
\left[\begin{array}{l}
\text { 估 } \\
00 \\
0 \\
0
\end{array}\right]
$$

(Read statement 27 is read for one $\operatorname{stream}$ ( $K$ subscript) at a time)
27. ${ }^{11 T S U S} 1$, $(\operatorname{TS}(1, J, K, 1), J=1, N T)-\operatorname{Format}(A 10,7 F 10.0 /(10 X, 7 \mathrm{Fl}, 0.0))$
${ }^{11 T S U S}{ }^{11}$
TS(1, J, K, 1)
(End of K -loop)

$$
\begin{aligned}
& \text { Card type identification } \\
& \text { Upstream }(I=1) \text { boundar }
\end{aligned}
$$

(Read statements 28 and 29 are read NP times and are omitted if $N P=0$ )
28. "QPbb", K, I, (QP(I, J, K), J = 1, NT) - Format (A4, 2I2, 2X, 7F10.0/(10X, 7F10.0))
Card type identification

$$
Q P(I, J, K) \text { Flowrate in cfs of point load entering stream at Ith computational point on }
$$

Kth stream. At present point loads are not accounted for in the Dynamic Routing
 should have a flowrate that is not significant when compared with the streamflow rate. Point loads that are significant thermally and in terms of flow should be treated as lateral inflow over a short sub-reach and input through DNR T.

## Format (A4, 2I2, 2X, 7FI0.0/(10X, 7F10.0)) <br> 'TPbb' Card type identification <br> $T P(I, J, K)$ Thermograph in deg. F for point load entering stream at Ith computational

V. Observed thermographs

Format (A10, Il0)
Card type identif
"NOTb", NOT
"NOTb"
Number of computational points for which observed thermographs are to be input
(Read statement 31 is read NOT times and is omitted if NOT $=0$ )
NOT
31. "TSOb", K, I, (TSO(INOT, J), J = 1,NT) - Format (A4, 2T2, 2X, 7F10.0/(10X, 7F10.0))

## Card type identification

Index for observed thermographs (INOT $=1$, NOT). The index INOT
is stored in array $\operatorname{INOTN}(\mathrm{I}, \mathrm{K})$.
TSO(INOT, J) INOTth observed thermograph in deg. F
VI. Meteorologic data and coefficients
AA(IC) $\quad \begin{aligned} & \text { Coefficients in the empirical expression (Equation 3.64) for the atmospheric } \\ & \text { radiation factor } \beta \text {. Standard values are: } \\ & \\ & (0.740,0.750,0.760,0.771,0.783,0.793,0.800,0.810,0.825, \\ & \\ & 0.845,0.866)\end{aligned}$

[^3] "TSOb"
INOT
'AAbb'
32. "AAbb", (AA (IC), IC = 1, 11) - Format (A10, 7Fl0.0/(10X, 4F10.0))
34. "TEbb", (TE(IE), $\mathrm{IE}=1,3)-\operatorname{Format}(\mathrm{Al0}, \mathrm{3F} 10.0)$

Card type identification
Temperatures in deg. $F$ that divides the linear approximations to the empirical expression (Equation 3.69) for saturation vapor pressure. values: $(50,68,86)$
35. "ESlb", (ESl(IE), $\mathrm{IE}=1,4$ ) - Format (A10, 4F10.0)

$$
\square .
$$

$$
\text { ( } \mathrm{I}^{\prime} \mathrm{I}=\mathrm{GI}
$$

## TE(IE)

 "TEbb"
## Card type identification


"ESlb"
36. "ES2b", (ES2(IE), IE = 1,4) - Format (A10, 4F10.0)
Card type identification pressure. Standard values: $(-0.138,-0.548,-1.440,-3.133)$ in. Hg.

$$
\text { pressure. Standard values: }(0.0098,0.0180,0.0312,0.0509)
$$

$$
\text { (in. Hg.) }(\text { deg. F })^{-1}
$$

Standard
"qZ S'ت"

$$
\begin{aligned}
& \text { (거) 2S'거 }
\end{aligned}
$$

(Read statements 37 to 40 are read for one stream (K subscript) at a time)
(Omit read statements 37 to 39 if ITECH $\neq 1$ )
37. "ALSR", (ALSR (I, K), $I=1$, NX1) - Format (A10, 7 Fl0.0/(10X, 7F10.0))
"ALSR" Card type identification


Solar altitude in degrees for Ith sub-reach at sunrise.
horizon $\operatorname{ALSR}(\mathrm{I}, \mathrm{K})=0$ deg.
ALSR(I, K)
For
相

# (I, 

horizon ALSR(I,K) =

> e


$$
\begin{array}{ll}
\text { "ALSS" } & \text { Card type identification } \\
\text { ALSS(I,K) } & \text { Solar altitude in degrees for } \\
& \text { horizon } \operatorname{ALSS}(I, \bar{K})=0 \text { deg. }
\end{array}
$$

unobstructed

ALSS（I，K）Solar altitude in degrees for Ith sub－reach at sunset．
$\operatorname{GR} \operatorname{DR} F(I, K)$ <br> Card type identification <br> "エণ Uゆぃ <br> \section*{＂とす પŋゆ＂} <br> \section*{＂とす પŋゆ＂}

Format（A10，7F10．0／（10X，7F10．0））

39．＂GRDR＂，（GRDRF（I，K），I＝1，NX1）
Albedo of ground surface adjacent to stream（see Table 3．3）
40．＂SHAD＂，（SHADE（I，K），$I=1, N X 1)$－Format（A10，7F10．0／（10X，7F10．0））
Card type identification

Fraction of sky shaded from the stream surface by vegetation or other obstructions excluding cloud cover in Ith sub－reach．Shading is expressed as a decimal fraction；for example， $25 \%$ shading should be input as 0.25 ． Figure Al may be useful when estimating the amount of shading．

＂SHAD＂
SHADE（I，K）
（End of K－loop）
41．＂NGbb＂，NG，IMDT－Format（A10，2I10）
Card type identification Number of sets of observed meteorologic data to be read．A meteorologic data set is a complete set of data for all the meteorologic variables required in DSTEMP．Several meteorologic groups may be used for modeling a stream system．Each set of meteorologic data is applied to a different group of sub－ reaches for which the observed data is considered representative．Several types of data are required for each meteorologic data set．For applications in which National Weather Service meteorologic data are used some data types，such as air temperature，are available at many more locations than other variables．In


Figure A.l. Aid to estimating shade factor (after Pluhowski, 1970).
cases the same values of the less available variables, such as wind velocity and atmospheric pressure, may be reused in several meteorologic data sets in which air temperature is the only variable that changes from data set to data set. The decision on the number of meteorologic data sets to be used
will depend on the relative location of meteorologic stations and the study reaches,
and also on meteorologic variability.
will depend on the relative location of meteorologic stations and the study reaches,
and also on meteorologic variability.
Ratio of number of computational time intervals (NT-1) to the number of
meteorologic time intervals. For example: if the computational time interval is 3 hours and meteorologic data is available at daily intervals then IMDT $=$ $24 / 3=8$ (See Figure 3.1). In this example meteorologic data for the first meteorologic time interval will be reused for each of the first 8 computational will be time intervals. Meteorologic data from the second meteorolgic time interval will be be reused for each of the computational time intervals 9 to 16 and so on. IMDI should be set to 1 the computational time interval is variable. (Applies to read statements 44 to 53).
$I O T R=1 \quad \operatorname{read} \operatorname{TR}(I G, J M)$
IOTR $=1$
Input option for


Dew point temperatures read into $T D(I G, J M)$
Relative humidities read into $T D(I G, J M)$ and converted to dew point temperatures by the program.

Input option for reading ATPR(IG, JM). (Applies to read statement 49)
Input option for reading $\operatorname{TD}(I G, J M)$. (Applies to read statement 48)

## IORH

IOATPR
level.
do not read ATPR(IG, JM). In this case ATPR(IG, JM) IOATPR $=0$
IOATPR $=1$ read $\operatorname{ATPR}$ (IG, JM) $\begin{array}{ll}\text { Input option for reading ICL(IG, JM). (Applies to read statement 52) } \\ \text { IOICL }=0 & \begin{array}{ll}\text { do not read ICL(IG, JM). In this case } I C L(I G, J M) \text { is set } \\ & \text { equal to } I C S(I G, J M) \text { by the program }\end{array} \\ I O I C L=1 & \text { readICL(IG, JM) }\end{array}$ IOIC L

[^4](End K-loop)
(Read statements 44 to 53 and read for one meteorologic data set (IG subscript) at a time total of NG sets)
(Omit read statement 44 if IOQE $=0$ )
44. "QEbb", (QE(IG, JM), JM = 1, NTM) - Format (A10, 7F10.0/(10X, 7F10.0))
Card type identification
Meteorologic data set index
Meteorologic time interval index
where NTM $=(\mathrm{NT}-1) /$ IMDT
$Q E(I G, J M)$ Evaporation in inches per computational time interval for the IGth
meteorologic data set.
(Omit read statement 45 if $I O Q R=0$ )
 "TRbb" Card type identification
TR(IG, JM) Wet - bulb temperature (used as rainfall temperature) in deg. F meteorologic data set.
47. "TAbb", (TA(IG, JM), JM = 1, NTM) - Format (A10, 7F10.0/(10X, 7F10.0)) "TAbb"
Card type identification
TA(IG, JM) Dry - bulb temperature in deg. Faveraged over the computational time
interval for the IGth meteorologic data set.
48. "TDRH", (TD(IG, JM), JM = 1, NTM) - Format (A10, 7F10.0/(10X, 7F10.0))
Card type identification
$T D(I G, J M)$ If IORH $=0$ then $T D(I G, J M)$ is dew point temperature in deg. $F$
averaged over the computational time interval for the IGth meteorologic
data set.
If IORH $=1$ then TD(IG, JM) is relative humidity as a percentage averaged
over the computational time interval for the IGth meteorologic data set.
(Omit read statement 49 if IOATPR $=0$ ) "ATPR" Card type identification
dara type identillcation

[^5] (NC 'DI) $\mathrm{Cd} \mathrm{C} V$
49. "ATPR", (ATPR(IG,JM), JM = 1, NTM) - Format (A10, 7F10.0/(10X, 7F10.0))
ATPR(IG, JM)
\[

$$
\begin{aligned}
& \text { Atmospheric pressure in inches Hg. averaged over the computational } \\
& \text { time interval for the IGth meteorologic data set. }
\end{aligned}
$$
\]

51. "ICSb", (ICS(IG, JM), JM = 1, NTM) - Format (A10, 7I10/(10X, 7I10))
Card type identification computational time interval for the IGth meteorologic data set. If the meteorologic time interval is 24 hours then ICS(IG, JM) is the average

(Omit read statement 52 if IOICL $=0$ )
52. "ICLb", (ICL(IG, JM), JM = 1, NTM) - Format (A10, 7I10/(10X, 7I10))

## Card type identification

Cloud cover in an integer number of tenths of cover averaged over the computational time interval for the IGth meteorologic data set. If the meteorologic time interval is 24 hours then ICL(IG, JM) is the average cloud cover over the 24 hour period.

## (Omit read statement 53 if ITECH $=1$ )

## "IC Lb" <br> IC L(IG, JM) 

## "ICSb"

"ICSb" | Card type identification |
| :--- |
| ICS(IG, JM) Cloud cover in an integer number of tenths of cover averaged over the |
| computational time interval for the IGth meteorologic data set. If the |

meteorologic time interval is 24 hours then ICS(IG, JM) is the average
cloud cover between sunrise and sunset.

Omit read statement 52 if IOICL $=0$ )
 -
"ICLb"
ICL(IG, JM)
53. "DYSL", (DYSL(IG, JM), JM = 1, NTM) - Format (A10, 7F10.0/(10X, 7F10.0))
Card type identification
If ITECH $=2$ then DYSL(IG, JM) is total incident solar radiation observed
between sunset and sunrise in Btu. ft. ${ }^{-2}$ day ${ }^{-1}$. If the meteorologic time radiation for all meteorologic time intervals contained in the 24 hour period. over the computational time interval in Btu. ft. ${ }^{-2} \mathrm{DT}(\mathrm{J})^{-1}$. "DYSL"
(NL'OI)TSAG
(End of IG-loop)
ICS(IG, JM) Cloud cover in an integer number of tenths of cover averaged over the If $\operatorname{ITECH}=3$ then DYSL(IG, JM) is total incident solar radiation observed
Program listing.




FILE $5=1$ MPUT
HLE $6=0$ utput


DAVID $S$ BOHLES, UTAH HATER RESEARCH LABORATORY, LOGAN, UTAH 84322 DOUBLE PRECISION ACOD










 N~N

3. Program listing (continued).







$\mathrm{K}=2$
$\mathrm{~K} 1 \mathrm{~K}=1$
$\mathrm{GO} \mathrm{K}=1$
${ }^{c}{ }_{160^{\circ}}$
3. Program listing (continued).


3. Program listing (continued).

	[F(QP(I.J.K))320.320,319
319	$L L=$ ?
320	 
	INOT = INOTM ( $1, K$ )
	IFCINOT)325.325.322
322	WRITE (KW, 531)TSO(INOT,J)
C **	MAIN STREAM
325	WRITE(KN.521)
	[F(NS-K)3 30,330.335
330	$\mathrm{NX1}=\mathrm{NB}(1)-1$
	GOTO 340
335	NXI $=$ NJUN(KP )
340	IF F K1)345.345.350
345	$\begin{aligned} & \begin{array}{l} N \times O=1 \\ \text { GOIO } 360 \end{array} \end{aligned}$
350	$\mathrm{NXO}=\mathrm{NJUN}(\mathrm{K})+1$
360	DO $380 \mathrm{I}=\mathrm{NXO} 0$ NX 1
	LL=1
362	$L \mathrm{~L}=2$
363	
	INOT= IMOTM 18 I)
	IF(INOT)380-380,365
365	WRITE (KWP531)TSO(INOT-J)
380	CONTINUE
385	COMTIMUE
	$\mathrm{I}=\mathrm{HX}_{1}+1$
	LL=1
	tFCOP(I.J. 131395.395 .390
390	LL=?
395	 
	IMOT= INOTM 1 I 1)
	IFCINOT)399.399.397
397	WRITE (KW, 531)TSOCINOF \% J)
399	WRITE (KW0529)
	IF(J-NT RUW 161.450,650
c	EWO OF TIME LOOP
c	-*************************
C ***	- Calculate statistics *
C	
450	STOP
	ENO




c en elimimate parts of ot outstoe sunrise - sumset perioo

3. Program listing (continued).


[^6]



Program listing (continued).




DSIEMP REM 1 SPAMN CREEK AUGUST 29-30, 1976 DIURAAL *CALIGRATION**
COPPONENTS OF HEAT EXCHANGE AI STREAM SURFACE AND BED
TIPE IATERYAL NO 1 SIZE OT $=1$. HRS (OAY 241 HCUP 13.00 TO OAY 241 HOUR 14.00)
ALE UNITS ARE BTUFT-2 PER OT IN HRS


CSIEMP RUA 1 spawn cre
alsust 29-30. 1974 DIUFNAL . OCALIJFATION:
HOURLY INTEPVALS
STGEAM TEMPEFATURES. ADVECTIVE HEAT SCUFCES. ANC HYOFAULIC CATA

TILE PINC 2 CAY 241 TOUR 14.00




Note: These output tables continue through time point No. 25, day 242, hour 13:00.


$$
0
$$




maIV B TH: HUTAKY SU"Y C:MEGING CATA




MAIN $B$ TRTBUTARY LGMY OFAGGETAS CATA
CORPONENTS OF YEAT EXCHANGE AT STQEAN SURFACE ANO HEC

ALL UNITS ANE, TUFT-Z PEA CT IA HNJ






```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MA14 & & & & & & & & & & & & & & & & \\
\hline 1 & 3.00 & :02. \({ }^{\text {a }}\) & 2.0: & 33.30 & : : \% 0 c \({ }^{\text {a }}\) & 0.0 '0 & - \((10\) (1) & 0.10 & -ci.c: & 1 & C.sc & 3.60 & C. CO & -505. & 75.00 & \\
\hline \% & 44.21 & : 3 ...? & 25.6" & 33.03 & 2couedo & c.13.2. & - crecos & (.) \(:\) & 3n:cy & ? & c. 00 & 0.00 & c. \({ }^{\text {co }}\) & -572. & 75.00 & \\
\hline ! & 49.43 & icionc & 35.00 & 52.00 & 10.33 & 1c.ujuc. & . UCCDIa & 0.1) & 50.1062 & , & 14.3 & 0.00 & C. 00 & -576. & 74.98 & \\
\hline TR 131 & & & & & & & & & & & & & & & & \\
\hline 1 & 0.76 & 1.200 & 9.51 & 13.63 & 250:-30 & C.0.0" & -0.cos & 0.00 & 45.60 & 1 & 16.00 & 0.00 & 0.00 & -502. & 75.00 & \\
\hline z & 0.28 & 17.60 & 9.80 & 13.80 & 1431.)? & 0.0113 & . cecos & c. 30 & 73.00 & 2 & 7C.01) & 0.10 & 0.10 & -570. & 74.63 & \\
\hline 3 & U.CD & 20.30 & 10.09 & 14.00 & & & & 0.01 & :31.00 & & & & 0.00 & & 74.32 & \\
\hline main & & & & & & & & & & & & & & & & \\
\hline 4 & 49.43 & 120.00 & 25.00 & 35.23 & 2600.0: & 0.0500 & - cocos & 0.00 & 603.60 & , & C. 00 & 0.10 & C. CO & -575. & 74.87 & \\
\hline s & 4). 05 & 120.00 & 26.0. & 35.23 & & & & 100.0 .1 & 503.03 & & & & 00.00 & & 78.47 & 74.88 \\
\hline
\end{tabular}
```

main \& tributary dummy deguggina cata
COPPCNENTS OF HEAT EXCHANGE AT STREAM SURFACE AND BEC
TIME INTERVAL NO 2 SIZE DT = 24. HRS (OAY 222 HOUR 24.0C TO DAY 223 HCUR 24.00 )
aLL UNITS ARE BTUFT-? PER DT IA HRS

				SURFACE		COMPONENTS		BACK	EvAP	CCAC	SNOM	SURF	$\begin{aligned} & B E D \\ & \text { QEDAE } \end{aligned}$	$\begin{aligned} & \text { COMFON } \\ & \text { EACK } \end{aligned}$	EED	rotals	
REACH	SOLAR	R RADIAT	ION	vegia	RADTV	ATMOS	RADIN									SURF	BED
NO	INCIDT	REFLEC	a HSORP	3NCIDT	'REFLEC	INCIOT	REFLEC	racte	LHVAP		LRFUS	RENE $H$	SOLAD	GECRD	CEND	EXCHGE	ExCHGE
TR181																	
1	1412.	-90.	1322.	0.	3.	3032.	-91.	-3309.	-497.	63.	c.	0.	0.	0.	0.	518.	$c$.
i	1384.	-92.	1293.	0.	0.	2884.	- 47.	-3325.	-746.	-43.	0.	0 .	0.	0 .	c.	-3.	0.
main																	
1	1247.	-RE.	1157.	0.	2.	3032.	-71.	-3316.	-5194.	61.	$c$.	$\bigcirc \cdot$	$c$.	0.	0.	347.	0.
i	1140.	-74.	1066.	0.	1.	2824.	-87.	-3510.	-76).	-4c.	$c$.	0.	0.	0.	0.	-254.	0.
	1140.	-76.	1066.	0.	0.	2894.	$-87$.	-3304.	-757.	-47.	c.	0.	c.	0.	0.	-250.	0.
	1140.	-74.	1066.	0.	3.	2884.	- - 7 .	-330氏.	-755.	-46.	c.	0.	0.	0.	$c$.	-246.	0.

MAIN $\&$ IRIEUTARY DLGHY CE BUGGIAG DATA
STREAR TEMPERATURES, ADVECTIVE MEAT SOURCES, ANC HYCFAULIC CATA
TIHE PTNO 3 CAY 223 RCUF 24.60



[^0]:    ${ }^{\text {a }}$ Optical air mass $\mathrm{m}=1 /\left[\sin \alpha+0.15(\alpha+3.885)^{-1.253}\right]$.

[^1]:    ${ }^{\text {a }}$ May be too low.

[^2]:    

[^3]:    
    
    
    
    
    

[^4]:    (Read statement 43 is read for one stream (K subscript) at a time)
    43. "NRGb", (NRG(I, K), I = 1, NX1) - Format (A10, 7Il0/(10X, 7Il0))
    representativeness of the selected data set to the meteorologic conditions
    in the Ith sub-reach
    NRG(I, K)

    ## 'NRGb" Card type identification

    Number of the meteorologic data set to be used in the Ith sub-reach.
    The selection of the data set for the Ith reach should be based on the

[^5]:    50. "WDVE", (WDVEL(IG, JM), JM = 1, NTM) - Format (A10, 7F10.0/(10X, 7F10.0))

    > Card type identification

    WDVEL(IG, JM) Wind wpeed in miles per hour averaged over the computational time
    interval for the IGth meteorologic data set.
    "WDVE"

[^6]:    
    
    
    
    
    OG1 $(14,2), C C 1(13), C C 2(13), C C 3(2), C C 4(2)$, WOVEL $(3,300)$.
    $\bullet$ COMMON/METL/NRG(14,2),
    
    
    
    
     IFCTSAV-TE
    CONTINUE
    IE=6
    $1 E=6$
    $C 19=-D U N *(E S 1(I E)-E A)$
    $C 29=-D U M * E S 2(I E)$
    RETURN

